/* * This file is part of the libsigrok project. * * Copyright (C) 2013-2014 Martin Ling * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* Needed for isascii(), as used in the GNU libstdc++ headers */ /* Needed in strutil.c for POSIX.1-2008 locale functions */ #ifndef _XOPEN_SOURCE #define _XOPEN_SOURCE 700 #endif #include #include #include #include namespace sigrok { /** Helper function to translate C errors to C++ exceptions. */ static void check(int result) { if (result != SR_OK) throw Error(result); } /** Helper function to obtain valid strings from possibly null input. */ static inline const char *valid_string(const char *input) { return (input) ? input : ""; } /** Helper function to convert between map and GHashTable */ static GHashTable *map_to_hash_variant(const map &input) { auto *const output = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, reinterpret_cast(&g_variant_unref)); for (const auto &entry : input) g_hash_table_insert(output, g_strdup(entry.first.c_str()), entry.second.gobj_copy()); return output; } Error::Error(int result) : result(result) { } const char *Error::what() const noexcept { return sr_strerror(result); } Error::~Error() noexcept { } ResourceReader::~ResourceReader() { } SR_PRIV int ResourceReader::open_callback(struct sr_resource *res, const char *name, void *cb_data) noexcept { try { auto *const reader = static_cast(cb_data); reader->open(res, name); } catch (const Error &err) { return err.result; } catch (...) { return SR_ERR; } return SR_OK; } SR_PRIV int ResourceReader::close_callback(struct sr_resource *res, void *cb_data) noexcept { try { auto *const reader = static_cast(cb_data); reader->close(res); } catch (const Error &err) { return err.result; } catch (...) { return SR_ERR; } return SR_OK; } SR_PRIV gssize ResourceReader::read_callback(const struct sr_resource *res, void *buf, size_t count, void *cb_data) noexcept { try { auto *const reader = static_cast(cb_data); return reader->read(res, buf, count); } catch (const Error &err) { return err.result; } catch (...) { return SR_ERR; } } shared_ptr Context::create() { return shared_ptr{new Context{}, default_delete{}}; } Context::Context() : _structure(nullptr), _session(nullptr) { check(sr_init(&_structure)); if (struct sr_dev_driver **driver_list = sr_driver_list(_structure)) for (int i = 0; driver_list[i]; i++) { unique_ptr driver {new Driver{driver_list[i]}}; _drivers.emplace(driver->name(), move(driver)); } if (const struct sr_input_module **input_list = sr_input_list()) for (int i = 0; input_list[i]; i++) { unique_ptr input {new InputFormat{input_list[i]}}; _input_formats.emplace(input->name(), move(input)); } if (const struct sr_output_module **output_list = sr_output_list()) for (int i = 0; output_list[i]; i++) { unique_ptr output {new OutputFormat{output_list[i]}}; _output_formats.emplace(output->name(), move(output)); } } string Context::package_version() { return sr_package_version_string_get(); } string Context::lib_version() { return sr_lib_version_string_get(); } map> Context::drivers() { map> result; for (const auto &entry: _drivers) { const auto &name = entry.first; const auto &driver = entry.second; result.emplace(name, driver->share_owned_by(shared_from_this())); } return result; } map> Context::input_formats() { map> result; for (const auto &entry: _input_formats) { const auto &name = entry.first; const auto &input_format = entry.second; result.emplace(name, input_format->share_owned_by(shared_from_this())); } return result; } shared_ptr Context::input_format_match(string filename) { const struct sr_input *input; const struct sr_input_module *imod; int rc; /* * Have the input module looked up for the specified file. * Failed lookup (or "successful lookup" with an empty result) * are non-fatal. Free the sr_input that was created by the * lookup routine, but grab the input module kind and return an * InputFormat instance to the application. This works because * the application passes a filename, no input data got buffered * in the sr_input that we release. */ input = NULL; rc = sr_input_scan_file(filename.c_str(), &input); if (rc != SR_OK) return nullptr; if (!input) return nullptr; imod = sr_input_module_get(input); sr_input_free(input); return shared_ptr{new InputFormat{imod}, default_delete{}}; } map> Context::output_formats() { map> result; for (const auto &entry: _output_formats) { const auto &name = entry.first; const auto &output_format = entry.second; result.emplace(name, output_format->share_owned_by(shared_from_this())); } return result; } Context::~Context() { check(sr_exit(_structure)); } const LogLevel *Context::log_level() const { return LogLevel::get(sr_log_loglevel_get()); } void Context::set_log_level(const LogLevel *level) { check(sr_log_loglevel_set(level->id())); } static int call_log_callback(void *cb_data, int loglevel, const char *format, va_list args) noexcept { const unique_ptr message {g_strdup_vprintf(format, args), &g_free}; auto *const callback = static_cast(cb_data); try { (*callback)(LogLevel::get(loglevel), message.get()); } catch (Error &e) { return e.result; } return SR_OK; } void Context::set_log_callback(LogCallbackFunction callback) { _log_callback = move(callback); check(sr_log_callback_set(call_log_callback, &_log_callback)); } void Context::set_log_callback_default() { check(sr_log_callback_set_default()); _log_callback = nullptr; } void Context::set_resource_reader(ResourceReader *reader) { if (reader) { check(sr_resource_set_hooks(_structure, &ResourceReader::open_callback, &ResourceReader::close_callback, &ResourceReader::read_callback, reader)); } else { check(sr_resource_set_hooks(_structure, nullptr, nullptr, nullptr, nullptr)); } } shared_ptr Context::create_session() { return shared_ptr{new Session{shared_from_this()}, default_delete{}}; } shared_ptr Context::create_user_device( string vendor, string model, string version) { return shared_ptr{ new UserDevice{move(vendor), move(model), move(version)}, default_delete{}}; } shared_ptr Context::create_header_packet(Glib::TimeVal start_time) { auto header = g_new(struct sr_datafeed_header, 1); header->feed_version = 1; header->starttime.tv_sec = start_time.tv_sec; header->starttime.tv_usec = start_time.tv_usec; auto packet = g_new(struct sr_datafeed_packet, 1); packet->type = SR_DF_HEADER; packet->payload = header; return shared_ptr{new Packet{nullptr, packet}, default_delete{}}; } shared_ptr Context::create_meta_packet( map config) { auto meta = g_new0(struct sr_datafeed_meta, 1); for (const auto &input : config) { const auto &key = input.first; const auto &value = input.second; auto *const output = g_new(struct sr_config, 1); output->key = key->id(); output->data = value.gobj_copy(); meta->config = g_slist_append(meta->config, output); } auto packet = g_new(struct sr_datafeed_packet, 1); packet->type = SR_DF_META; packet->payload = meta; return shared_ptr{new Packet{nullptr, packet}, default_delete{}}; } shared_ptr Context::create_logic_packet( void *data_pointer, size_t data_length, unsigned int unit_size) { auto logic = g_new(struct sr_datafeed_logic, 1); logic->length = data_length; logic->unitsize = unit_size; logic->data = data_pointer; auto packet = g_new(struct sr_datafeed_packet, 1); packet->type = SR_DF_LOGIC; packet->payload = logic; return shared_ptr{new Packet{nullptr, packet}, default_delete{}}; } shared_ptr Context::create_analog_packet( vector > channels, const float *data_pointer, unsigned int num_samples, const Quantity *mq, const Unit *unit, vector mqflags) { auto analog = g_new0(struct sr_datafeed_analog, 1); auto meaning = g_new0(struct sr_analog_meaning, 1); auto encoding = g_new0(struct sr_analog_encoding, 1); auto spec = g_new0(struct sr_analog_spec, 1); analog->meaning = meaning; for (const auto &channel : channels) meaning->channels = g_slist_append(meaning->channels, channel->_structure); meaning->mq = static_cast(mq->id()); meaning->unit = static_cast(unit->id()); meaning->mqflags = static_cast(QuantityFlag::mask_from_flags(move(mqflags))); analog->encoding = encoding; encoding->unitsize = sizeof(float); encoding->is_signed = TRUE; encoding->is_float = TRUE; #ifdef WORDS_BIGENDIAN encoding->is_bigendian = TRUE; #else encoding->is_bigendian = FALSE; #endif encoding->digits = 0; encoding->is_digits_decimal = FALSE; encoding->scale.p = 1; encoding->scale.q = 1; encoding->offset.p = 0; encoding->offset.q = 1; analog->spec = spec; spec->spec_digits = 0; analog->num_samples = num_samples; analog->data = (float*)data_pointer; auto packet = g_new(struct sr_datafeed_packet, 1); packet->type = SR_DF_ANALOG; packet->payload = analog; return shared_ptr{new Packet{nullptr, packet}, default_delete{}}; } shared_ptr Context::create_end_packet() { auto packet = g_new(struct sr_datafeed_packet, 1); packet->type = SR_DF_END; return shared_ptr{new Packet{nullptr, packet}, default_delete{}}; } shared_ptr Context::load_session(string filename) { return shared_ptr{ new Session{shared_from_this(), move(filename)}, default_delete{}}; } shared_ptr Context::create_trigger(string name) { return shared_ptr{ new Trigger{shared_from_this(), move(name)}, default_delete{}}; } shared_ptr Context::open_file(string filename) { const struct sr_input *input; check(sr_input_scan_file(filename.c_str(), &input)); return shared_ptr{ new Input{shared_from_this(), input}, default_delete{}}; } shared_ptr Context::open_stream(string header) { const struct sr_input *input; auto gstr = g_string_new(header.c_str()); auto ret = sr_input_scan_buffer(gstr, &input); g_string_free(gstr, true); check(ret); return shared_ptr{ new Input{shared_from_this(), input}, default_delete{}}; } map Context::serials(shared_ptr driver) const { GSList *serial_list = sr_serial_list(driver ? driver->_structure : nullptr); map serials; for (GSList *serial = serial_list; serial; serial = serial->next) { auto *const port = static_cast(serial->data); serials[string(port->name)] = string(port->description); } g_slist_free_full(serial_list, reinterpret_cast(&sr_serial_free)); return serials; } Driver::Driver(struct sr_dev_driver *structure) : Configurable(structure, nullptr, nullptr), _structure(structure), _initialized(false) { } Driver::~Driver() { } string Driver::name() const { return valid_string(_structure->name); } string Driver::long_name() const { return valid_string(_structure->longname); } set Driver::scan_options() const { GArray *opts = sr_driver_scan_options_list(_structure); set result; if (opts) { for (guint i = 0; i < opts->len; i++) result.insert(ConfigKey::get(g_array_index(opts, uint32_t, i))); g_array_free(opts, TRUE); } return result; } vector> Driver::scan( map options) { /* Initialise the driver if not yet done. */ if (!_initialized) { check(sr_driver_init(_parent->_structure, _structure)); _initialized = true; } /* Translate scan options to GSList of struct sr_config pointers. */ GSList *option_list = nullptr; for (const auto &entry : options) { const auto &key = entry.first; const auto &value = entry.second; auto *const config = g_new(struct sr_config, 1); config->key = key->id(); config->data = const_cast(value.gobj()); option_list = g_slist_append(option_list, config); } /* Run scan. */ GSList *device_list = sr_driver_scan(_structure, option_list); /* Free option list. */ g_slist_free_full(option_list, g_free); /* Create device objects. */ vector> result; for (GSList *device = device_list; device; device = device->next) { auto *const sdi = static_cast(device->data); shared_ptr hwdev { new HardwareDevice{shared_from_this(), sdi}, default_delete{}}; result.push_back(move(hwdev)); } /* Free GSList returned from scan. */ g_slist_free(device_list); return result; } Configurable::Configurable( struct sr_dev_driver *driver, struct sr_dev_inst *sdi, struct sr_channel_group *cg) : config_driver(driver), config_sdi(sdi), config_channel_group(cg) { } Configurable::~Configurable() { } set Configurable::config_keys() const { GArray *opts; set result; opts = sr_dev_options(config_driver, config_sdi, config_channel_group); if (opts) { for (guint i = 0; i < opts->len; i++) result.insert(ConfigKey::get(g_array_index(opts, uint32_t, i))); g_array_free(opts, TRUE); } return result; } Glib::VariantBase Configurable::config_get(const ConfigKey *key) const { GVariant *data; check(sr_config_get( config_driver, config_sdi, config_channel_group, key->id(), &data)); return Glib::VariantBase(data); } void Configurable::config_set(const ConfigKey *key, const Glib::VariantBase &value) { check(sr_config_set( config_sdi, config_channel_group, key->id(), const_cast(value.gobj()))); } set Configurable::config_capabilities(const ConfigKey *key) const { int caps = sr_dev_config_capabilities_list(config_sdi, config_channel_group, key->id()); set result; for (auto cap: Capability::values()) if (caps & cap->id()) result.insert(cap); return result; } bool Configurable::config_check(const ConfigKey *key, const Capability *capability) const { int caps = sr_dev_config_capabilities_list(config_sdi, config_channel_group, key->id()); return (caps & capability->id()); } Glib::VariantContainerBase Configurable::config_list(const ConfigKey *key) const { GVariant *data; check(sr_config_list( config_driver, config_sdi, config_channel_group, key->id(), &data)); return Glib::VariantContainerBase(data); } Device::Device(struct sr_dev_inst *structure) : Configurable(sr_dev_inst_driver_get(structure), structure, nullptr), _structure(structure) { for (GSList *entry = sr_dev_inst_channels_get(structure); entry; entry = entry->next) { auto *const ch = static_cast(entry->data); unique_ptr channel {new Channel{ch}}; _channels.emplace(ch, move(channel)); } for (GSList *entry = sr_dev_inst_channel_groups_get(structure); entry; entry = entry->next) { auto *const cg = static_cast(entry->data); unique_ptr group {new ChannelGroup{this, cg}}; _channel_groups.emplace(group->name(), move(group)); } } Device::~Device() { } string Device::vendor() const { return valid_string(sr_dev_inst_vendor_get(_structure)); } string Device::model() const { return valid_string(sr_dev_inst_model_get(_structure)); } string Device::version() const { return valid_string(sr_dev_inst_version_get(_structure)); } string Device::serial_number() const { return valid_string(sr_dev_inst_sernum_get(_structure)); } string Device::connection_id() const { return valid_string(sr_dev_inst_connid_get(_structure)); } vector> Device::channels() { vector> result; for (auto channel = sr_dev_inst_channels_get(_structure); channel; channel = channel->next) { auto *const ch = static_cast(channel->data); result.push_back(_channels[ch]->share_owned_by(get_shared_from_this())); } return result; } shared_ptr Device::get_channel(struct sr_channel *ptr) { return _channels[ptr]->share_owned_by(get_shared_from_this()); } map> Device::channel_groups() { map> result; for (const auto &entry: _channel_groups) { const auto &name = entry.first; const auto &channel_group = entry.second; result.emplace(name, channel_group->share_owned_by(get_shared_from_this())); } return result; } void Device::open() { check(sr_dev_open(_structure)); } void Device::close() { check(sr_dev_close(_structure)); } HardwareDevice::HardwareDevice(shared_ptr driver, struct sr_dev_inst *structure) : Device(structure), _driver(move(driver)) { } HardwareDevice::~HardwareDevice() { } shared_ptr HardwareDevice::get_shared_from_this() { return static_pointer_cast(shared_from_this()); } shared_ptr HardwareDevice::driver() { return _driver; } UserDevice::UserDevice(string vendor, string model, string version) : Device(sr_dev_inst_user_new( vendor.c_str(), model.c_str(), version.c_str())) { } UserDevice::~UserDevice() { } shared_ptr UserDevice::get_shared_from_this() { return static_pointer_cast(shared_from_this()); } shared_ptr UserDevice::add_channel(unsigned int index, const ChannelType *type, string name) { check(sr_dev_inst_channel_add(Device::_structure, index, type->id(), name.c_str())); GSList *const last = g_slist_last(sr_dev_inst_channels_get(Device::_structure)); auto *const ch = static_cast(last->data); unique_ptr channel {new Channel{ch}}; _channels.emplace(ch, move(channel)); return get_channel(ch); } Channel::Channel(struct sr_channel *structure) : _structure(structure), _type(ChannelType::get(_structure->type)) { } Channel::~Channel() { } string Channel::name() const { return valid_string(_structure->name); } void Channel::set_name(string name) { check(sr_dev_channel_name_set(_structure, name.c_str())); } const ChannelType *Channel::type() const { return ChannelType::get(_structure->type); } bool Channel::enabled() const { return _structure->enabled; } void Channel::set_enabled(bool value) { check(sr_dev_channel_enable(_structure, value)); } unsigned int Channel::index() const { return _structure->index; } ChannelGroup::ChannelGroup(const Device *device, struct sr_channel_group *structure) : Configurable(sr_dev_inst_driver_get(device->_structure), device->_structure, structure) { for (GSList *entry = config_channel_group->channels; entry; entry = entry->next) { auto *const ch = static_cast(entry->data); /* Note: This relies on Device::_channels to keep the Channel * objects around over the lifetime of the ChannelGroup. */ _channels.push_back(device->_channels.find(ch)->second.get()); } } ChannelGroup::~ChannelGroup() { } string ChannelGroup::name() const { return valid_string(config_channel_group->name); } vector> ChannelGroup::channels() { vector> result; for (const auto &channel : _channels) result.push_back(channel->share_owned_by(_parent)); return result; } Trigger::Trigger(shared_ptr context, string name) : _structure(sr_trigger_new(name.c_str())), _context(move(context)) { for (auto *stage = _structure->stages; stage; stage = stage->next) { unique_ptr ts {new TriggerStage{ static_cast(stage->data)}}; _stages.push_back(move(ts)); } } Trigger::~Trigger() { sr_trigger_free(_structure); } string Trigger::name() const { return _structure->name; } vector> Trigger::stages() { vector> result; for (const auto &stage : _stages) result.push_back(stage->share_owned_by(shared_from_this())); return result; } shared_ptr Trigger::add_stage() { unique_ptr stage {new TriggerStage{sr_trigger_stage_add(_structure)}}; _stages.push_back(move(stage)); return _stages.back()->share_owned_by(shared_from_this()); } TriggerStage::TriggerStage(struct sr_trigger_stage *structure) : _structure(structure) { } TriggerStage::~TriggerStage() { } int TriggerStage::number() const { return _structure->stage; } vector> TriggerStage::matches() { vector> result; for (const auto &match : _matches) result.push_back(match->share_owned_by(shared_from_this())); return result; } void TriggerStage::add_match(shared_ptr channel, const TriggerMatchType *type, float value) { check(sr_trigger_match_add(_structure, channel->_structure, type->id(), value)); GSList *const last = g_slist_last(_structure->matches); unique_ptr match {new TriggerMatch{ static_cast(last->data), move(channel)}}; _matches.push_back(move(match)); } void TriggerStage::add_match(shared_ptr channel, const TriggerMatchType *type) { add_match(move(channel), type, NAN); } TriggerMatch::TriggerMatch(struct sr_trigger_match *structure, shared_ptr channel) : _structure(structure), _channel(move(channel)) { } TriggerMatch::~TriggerMatch() { } shared_ptr TriggerMatch::channel() { return _channel; } const TriggerMatchType *TriggerMatch::type() const { return TriggerMatchType::get(_structure->match); } float TriggerMatch::value() const { return _structure->value; } DatafeedCallbackData::DatafeedCallbackData(Session *session, DatafeedCallbackFunction callback) : _callback(move(callback)), _session(session) { } void DatafeedCallbackData::run(const struct sr_dev_inst *sdi, const struct sr_datafeed_packet *pkt) { auto device = _session->get_device(sdi); shared_ptr packet {new Packet{device, pkt}, default_delete{}}; _callback(move(device), move(packet)); } SessionDevice::SessionDevice(struct sr_dev_inst *structure) : Device(structure) { } SessionDevice::~SessionDevice() { } shared_ptr SessionDevice::get_shared_from_this() { return static_pointer_cast(shared_from_this()); } Session::Session(shared_ptr context) : _structure(nullptr), _context(move(context)) { check(sr_session_new(_context->_structure, &_structure)); _context->_session = this; } Session::Session(shared_ptr context, string filename) : _structure(nullptr), _context(move(context)), _filename(move(filename)) { check(sr_session_load(_context->_structure, _filename.c_str(), &_structure)); GSList *dev_list; check(sr_session_dev_list(_structure, &dev_list)); for (GSList *dev = dev_list; dev; dev = dev->next) { auto *const sdi = static_cast(dev->data); unique_ptr device {new SessionDevice{sdi}}; _owned_devices.emplace(sdi, move(device)); } _context->_session = this; g_slist_free(dev_list); } Session::~Session() { check(sr_session_destroy(_structure)); } shared_ptr Session::get_device(const struct sr_dev_inst *sdi) { if (_owned_devices.count(sdi)) return static_pointer_cast( _owned_devices[sdi]->share_owned_by(shared_from_this())); else if (_other_devices.count(sdi)) return _other_devices[sdi]; else throw Error(SR_ERR_BUG); } void Session::add_device(shared_ptr device) { const auto dev_struct = device->_structure; check(sr_session_dev_add(_structure, dev_struct)); _other_devices[dev_struct] = move(device); } vector> Session::devices() { GSList *dev_list; check(sr_session_dev_list(_structure, &dev_list)); vector> result; for (GSList *dev = dev_list; dev; dev = dev->next) { auto *const sdi = static_cast(dev->data); result.push_back(get_device(sdi)); } g_slist_free(dev_list); return result; } void Session::remove_devices() { _other_devices.clear(); check(sr_session_dev_remove_all(_structure)); } void Session::start() { check(sr_session_start(_structure)); } void Session::run() { check(sr_session_run(_structure)); } void Session::stop() { check(sr_session_stop(_structure)); } bool Session::is_running() const { const int ret = sr_session_is_running(_structure); if (ret < 0) throw Error{ret}; return (ret != 0); } static void session_stopped_callback(void *data) noexcept { auto *const callback = static_cast(data); (*callback)(); } void Session::set_stopped_callback(SessionStoppedCallback callback) { _stopped_callback = move(callback); if (_stopped_callback) check(sr_session_stopped_callback_set(_structure, &session_stopped_callback, &_stopped_callback)); else check(sr_session_stopped_callback_set(_structure, nullptr, nullptr)); } static void datafeed_callback(const struct sr_dev_inst *sdi, const struct sr_datafeed_packet *pkt, void *cb_data) noexcept { auto callback = static_cast(cb_data); callback->run(sdi, pkt); } void Session::add_datafeed_callback(DatafeedCallbackFunction callback) { unique_ptr cb_data {new DatafeedCallbackData{this, move(callback)}}; check(sr_session_datafeed_callback_add(_structure, &datafeed_callback, cb_data.get())); _datafeed_callbacks.push_back(move(cb_data)); } void Session::remove_datafeed_callbacks() { check(sr_session_datafeed_callback_remove_all(_structure)); _datafeed_callbacks.clear(); } shared_ptr Session::trigger() { return _trigger; } void Session::set_trigger(shared_ptr trigger) { if (!trigger) // Set NULL trigger, i.e. remove any trigger from the session. check(sr_session_trigger_set(_structure, nullptr)); else check(sr_session_trigger_set(_structure, trigger->_structure)); _trigger = move(trigger); } string Session::filename() const { return _filename; } shared_ptr Session::context() { return _context; } Packet::Packet(shared_ptr device, const struct sr_datafeed_packet *structure) : _structure(structure), _device(move(device)) { switch (structure->type) { case SR_DF_HEADER: _payload.reset(new Header{ static_cast( structure->payload)}); break; case SR_DF_META: _payload.reset(new Meta{ static_cast( structure->payload)}); break; case SR_DF_LOGIC: _payload.reset(new Logic{ static_cast( structure->payload)}); break; case SR_DF_ANALOG: _payload.reset(new Analog{ static_cast( structure->payload)}); break; } } Packet::~Packet() { } const PacketType *Packet::type() const { return PacketType::get(_structure->type); } shared_ptr Packet::payload() { if (_payload) return _payload->share_owned_by(shared_from_this()); else throw Error(SR_ERR_NA); } PacketPayload::PacketPayload() { } PacketPayload::~PacketPayload() { } Header::Header(const struct sr_datafeed_header *structure) : PacketPayload(), _structure(structure) { } Header::~Header() { } shared_ptr Header::share_owned_by(shared_ptr _parent) { return static_pointer_cast( ParentOwned::share_owned_by(_parent)); } int Header::feed_version() const { return _structure->feed_version; } Glib::TimeVal Header::start_time() const { return Glib::TimeVal( _structure->starttime.tv_sec, _structure->starttime.tv_usec); } Meta::Meta(const struct sr_datafeed_meta *structure) : PacketPayload(), _structure(structure) { } Meta::~Meta() { } shared_ptr Meta::share_owned_by(shared_ptr _parent) { return static_pointer_cast( ParentOwned::share_owned_by(_parent)); } map Meta::config() const { map result; for (auto l = _structure->config; l; l = l->next) { auto *const config = static_cast(l->data); result[ConfigKey::get(config->key)] = Glib::VariantBase(config->data, true); } return result; } Logic::Logic(const struct sr_datafeed_logic *structure) : PacketPayload(), _structure(structure) { } Logic::~Logic() { } shared_ptr Logic::share_owned_by(shared_ptr _parent) { return static_pointer_cast( ParentOwned::share_owned_by(_parent)); } void *Logic::data_pointer() { return _structure->data; } size_t Logic::data_length() const { return _structure->length; } unsigned int Logic::unit_size() const { return _structure->unitsize; } Analog::Analog(const struct sr_datafeed_analog *structure) : PacketPayload(), _structure(structure) { } Analog::~Analog() { } shared_ptr Analog::share_owned_by(shared_ptr _parent) { return static_pointer_cast( ParentOwned::share_owned_by(_parent)); } void *Analog::data_pointer() { return _structure->data; } void Analog::get_data_as_float(float *dest) { check(sr_analog_to_float(_structure, dest)); } unsigned int Analog::num_samples() const { return _structure->num_samples; } vector> Analog::channels() { vector> result; for (auto l = _structure->meaning->channels; l; l = l->next) { auto *const ch = static_cast(l->data); result.push_back(_parent->_device->get_channel(ch)); } return result; } unsigned int Analog::unitsize() const { return _structure->encoding->unitsize; } bool Analog::is_signed() const { return _structure->encoding->is_signed; } bool Analog::is_float() const { return _structure->encoding->is_float; } bool Analog::is_bigendian() const { return _structure->encoding->is_bigendian; } int Analog::digits() const { return _structure->encoding->digits; } bool Analog::is_digits_decimal() const { return _structure->encoding->is_digits_decimal; } shared_ptr Analog::scale() { unique_ptr scale; scale.reset(new Rational(&(_structure->encoding->scale))); if (scale) return scale->share_owned_by(shared_from_this()); else throw Error(SR_ERR_NA); } shared_ptr Analog::offset() { unique_ptr offset; offset.reset(new Rational(&(_structure->encoding->offset))); if (offset) return offset->share_owned_by(shared_from_this()); else throw Error(SR_ERR_NA); } const Quantity *Analog::mq() const { return Quantity::get(_structure->meaning->mq); } const Unit *Analog::unit() const { return Unit::get(_structure->meaning->unit); } vector Analog::mq_flags() const { return QuantityFlag::flags_from_mask(_structure->meaning->mqflags); } shared_ptr Analog::get_logic_via_threshold(float threshold, uint8_t *data_ptr) const { auto datafeed = g_new(struct sr_datafeed_logic, 1); datafeed->length = num_samples(); datafeed->unitsize = 1; if (data_ptr) datafeed->data = data_ptr; else datafeed->data = g_malloc(datafeed->length); shared_ptr logic = shared_ptr{new Logic{datafeed}, default_delete{}}; check(sr_a2l_threshold(_structure, threshold, (uint8_t*)datafeed->data, datafeed->length)); return logic; } shared_ptr Analog::get_logic_via_schmitt_trigger(float lo_thr, float hi_thr, uint8_t *state, uint8_t *data_ptr) const { auto datafeed = g_new(struct sr_datafeed_logic, 1); datafeed->length = num_samples(); datafeed->unitsize = 1; if (data_ptr) datafeed->data = data_ptr; else datafeed->data = g_malloc(datafeed->length); shared_ptr logic = shared_ptr{new Logic{datafeed}, default_delete{}}; check(sr_a2l_schmitt_trigger(_structure, lo_thr, hi_thr, state, (uint8_t*)datafeed->data, datafeed->length)); return logic; } Rational::Rational(const struct sr_rational *structure) : _structure(structure) { } Rational::~Rational() { } shared_ptr Rational::share_owned_by(shared_ptr _parent) { return static_pointer_cast( ParentOwned::share_owned_by(_parent)); } int64_t Rational::numerator() const { return _structure->p; } uint64_t Rational::denominator() const { return _structure->q; } float Rational::value() const { return (float)(_structure->p) / (float)(_structure->q); } InputFormat::InputFormat(const struct sr_input_module *structure) : _structure(structure) { } InputFormat::~InputFormat() { } string InputFormat::name() const { return valid_string(sr_input_id_get(_structure)); } string InputFormat::description() const { return valid_string(sr_input_description_get(_structure)); } vector InputFormat::extensions() const { vector exts; for (const char *const *e = sr_input_extensions_get(_structure); e && *e; e++) exts.push_back(*e); return exts; } map> InputFormat::options() { map> result; if (const struct sr_option **options = sr_input_options_get(_structure)) { shared_ptr option_array {options, &sr_input_options_free}; for (int i = 0; options[i]; i++) { shared_ptr