/* * This file is part of the libsigrok project. * * Copyright (C) 2014 Daniel Elstner * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" #include "libsigrok.h" #include "libsigrok-internal.h" #include #include #include #include static const int32_t hwopts[] = { SR_CONF_CONN, }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_EXTERNAL_CLOCK, SR_CONF_CLOCK_EDGE, SR_CONF_TRIGGER_TYPE, SR_CONF_TRIGGER_SOURCE, SR_CONF_TRIGGER_SLOPE, SR_CONF_LIMIT_MSEC, SR_CONF_LIMIT_SAMPLES, }; /* The hardware supports more samplerates than these, but these are the * options hardcoded into the vendor's Windows GUI. */ static const uint64_t samplerates[] = { SR_MHZ(125), SR_MHZ(100), SR_MHZ(50), SR_MHZ(20), SR_MHZ(10), SR_MHZ(5), SR_MHZ(2), SR_MHZ(1), SR_KHZ(500), SR_KHZ(200), SR_KHZ(100), SR_KHZ(50), SR_KHZ(20), SR_KHZ(10), SR_KHZ(5), SR_KHZ(2), SR_KHZ(1), SR_HZ(500), SR_HZ(200), SR_HZ(100), }; /* Names assigned to available trigger sources. Indices must match * trigger_source enum values. */ static const char *const trigger_source_names[] = { "CH", "TRG" }; /* Names assigned to available trigger slope choices. Indices must * match the signal_edge enum values. */ static const char *const signal_edge_names[] = { "r", "f" }; SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info; static struct sr_dev_driver *const di = &sysclk_lwla_driver_info; static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static GSList *gen_probe_list(int num_probes) { GSList *list; struct sr_probe *probe; int i; char name[8]; list = NULL; for (i = num_probes; i > 0; --i) { /* The LWLA series simply number probes from CH1 to CHxx. */ g_snprintf(name, sizeof(name), "CH%d", i); probe = sr_probe_new(i - 1, SR_PROBE_LOGIC, TRUE, name); list = g_slist_prepend(list, probe); } return list; } static struct sr_dev_inst *dev_inst_new(int device_index) { struct sr_dev_inst *sdi; struct dev_context *devc; /* Allocate memory for our private driver context. */ devc = g_try_new0(struct dev_context, 1); if (!devc) { sr_err("Device context malloc failed."); return NULL; } /* Register the device with libsigrok. */ sdi = sr_dev_inst_new(device_index, SR_ST_INACTIVE, VENDOR_NAME, MODEL_NAME, NULL); if (!sdi) { sr_err("Failed to instantiate device."); g_free(devc); return NULL; } /* Enable all channels to match the default probe configuration. */ devc->channel_mask = ALL_CHANNELS_MASK; devc->samplerate = DEFAULT_SAMPLERATE; sdi->priv = devc; sdi->probes = gen_probe_list(NUM_PROBES); return sdi; } static GSList *scan(GSList *options) { GSList *usb_devices, *devices, *node; struct drv_context *drvc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_config *src; const char *conn; int device_index; drvc = di->priv; conn = USB_VID_PID; for (node = options; node != NULL; node = node->next) { src = node->data; if (src->key == SR_CONF_CONN) { conn = g_variant_get_string(src->data, NULL); break; } } usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); devices = NULL; device_index = g_slist_length(drvc->instances); for (node = usb_devices; node != NULL; node = node->next) { usb = node->data; /* Create sigrok device instance. */ sdi = dev_inst_new(device_index); if (!sdi) { sr_usb_dev_inst_free(usb); continue; } sdi->driver = di; sdi->inst_type = SR_INST_USB; sdi->conn = usb; /* Register device instance with driver. */ drvc->instances = g_slist_append(drvc->instances, sdi); devices = g_slist_append(devices, sdi); } g_slist_free(usb_devices); return devices; } static GSList *dev_list(void) { struct drv_context *drvc; drvc = di->priv; return drvc->instances; } static void clear_dev_context(void *priv) { struct dev_context *devc; devc = priv; sr_dbg("Device context cleared."); lwla_free_acquisition_state(devc->acquisition); g_free(devc); } static int dev_clear(void) { return std_dev_clear(di, &clear_dev_context); } static int dev_open(struct sr_dev_inst *sdi) { struct drv_context *drvc; struct sr_usb_dev_inst *usb; int ret; drvc = di->priv; if (!drvc) { sr_err("Driver was not initialized."); return SR_ERR; } usb = sdi->conn; ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb); if (ret != SR_OK) return ret; ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret < 0) { sr_err("Failed to claim interface: %s.", libusb_error_name(ret)); return SR_ERR; } sdi->status = SR_ST_INITIALIZING; ret = lwla_init_device(sdi); if (ret == SR_OK) sdi->status = SR_ST_ACTIVE; return ret; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; if (!di->priv) { sr_err("Driver was not initialized."); return SR_ERR; } usb = sdi->conn; if (!usb->devhdl) return SR_OK; sdi->status = SR_ST_INACTIVE; /* Trigger download of the shutdown bitstream. */ if (lwla_set_clock_config(sdi) != SR_OK) sr_err("Unable to shut down device."); libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); usb->devhdl = NULL; return SR_OK; } static int cleanup(void) { return dev_clear(); } static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { struct dev_context *devc; size_t idx; (void)probe_group; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; switch (key) { case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->samplerate); break; case SR_CONF_LIMIT_MSEC: *data = g_variant_new_uint64(devc->limit_msec); break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_EXTERNAL_CLOCK: *data = g_variant_new_boolean(devc->cfg_clock_source == CLOCK_EXT_CLK); break; case SR_CONF_CLOCK_EDGE: idx = devc->cfg_clock_edge; if (idx >= G_N_ELEMENTS(signal_edge_names)) return SR_ERR_BUG; *data = g_variant_new_string(signal_edge_names[idx]); break; case SR_CONF_TRIGGER_SOURCE: idx = devc->cfg_trigger_source; if (idx >= G_N_ELEMENTS(trigger_source_names)) return SR_ERR_BUG; *data = g_variant_new_string(trigger_source_names[idx]); break; case SR_CONF_TRIGGER_SLOPE: idx = devc->cfg_trigger_slope; if (idx >= G_N_ELEMENTS(signal_edge_names)) return SR_ERR_BUG; *data = g_variant_new_string(signal_edge_names[idx]); break; default: return SR_ERR_NA; } return SR_OK; } /* Helper for mapping a string-typed configuration value to an index * within a table of possible values. */ static int lookup_index(GVariant *value, const char *const *table, int len) { const char *entry; int i; entry = g_variant_get_string(value, NULL); if (!entry) return -1; /* Linear search is fine for very small tables. */ for (i = 0; i < len; ++i) { if (strcmp(entry, table[i]) == 0) return i; } return -1; } static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { uint64_t value; struct dev_context *devc; int idx; (void)probe_group; devc = sdi->priv; if (!devc) return SR_ERR_DEV_CLOSED; switch (key) { case SR_CONF_SAMPLERATE: value = g_variant_get_uint64(data); if (value < samplerates[G_N_ELEMENTS(samplerates) - 1] || value > samplerates[0]) return SR_ERR_SAMPLERATE; devc->samplerate = value; break; case SR_CONF_LIMIT_MSEC: value = g_variant_get_uint64(data); if (value > MAX_LIMIT_MSEC) return SR_ERR_ARG; devc->limit_msec = value; break; case SR_CONF_LIMIT_SAMPLES: value = g_variant_get_uint64(data); if (value > MAX_LIMIT_SAMPLES) return SR_ERR_ARG; devc->limit_samples = value; break; case SR_CONF_EXTERNAL_CLOCK: devc->cfg_clock_source = (g_variant_get_boolean(data)) ? CLOCK_EXT_CLK : CLOCK_INTERNAL; break; case SR_CONF_CLOCK_EDGE: idx = lookup_index(data, signal_edge_names, G_N_ELEMENTS(signal_edge_names)); if (idx < 0) return SR_ERR_ARG; devc->cfg_clock_edge = idx; break; case SR_CONF_TRIGGER_SOURCE: idx = lookup_index(data, trigger_source_names, G_N_ELEMENTS(trigger_source_names)); if (idx < 0) return SR_ERR_ARG; devc->cfg_trigger_source = idx; break; case SR_CONF_TRIGGER_SLOPE: idx = lookup_index(data, signal_edge_names, G_N_ELEMENTS(signal_edge_names)); if (idx < 0) return SR_ERR_ARG; devc->cfg_trigger_slope = idx; break; default: return SR_ERR_NA; } return SR_OK; } static int config_probe_set(const struct sr_dev_inst *sdi, struct sr_probe *probe, unsigned int changes) { uint64_t probe_bit; uint64_t trigger_mask; uint64_t trigger_values; uint64_t trigger_edge_mask; struct dev_context *devc; devc = sdi->priv; if (!devc) return SR_ERR_DEV_CLOSED; if (probe->index < 0 || probe->index >= NUM_PROBES) { sr_err("Probe index %d out of range.", probe->index); return SR_ERR_BUG; } probe_bit = (uint64_t)1 << probe->index; if ((changes & SR_PROBE_SET_ENABLED) != 0) { /* Enable or disable input channel for this probe. */ if (probe->enabled) devc->channel_mask |= probe_bit; else devc->channel_mask &= ~probe_bit; } if ((changes & SR_PROBE_SET_TRIGGER) != 0) { trigger_mask = devc->trigger_mask & ~probe_bit; trigger_values = devc->trigger_values & ~probe_bit; trigger_edge_mask = devc->trigger_edge_mask & ~probe_bit; if (probe->trigger && probe->trigger[0] != '\0') { if (probe->trigger[1] != '\0') { sr_warn("Trigger configuration \"%s\" with " "multiple stages is not supported.", probe->trigger); return SR_ERR_ARG; } /* Enable trigger for this probe. */ trigger_mask |= probe_bit; /* Configure edge mask and trigger value. */ switch (probe->trigger[0]) { case '1': trigger_values |= probe_bit; case '0': break; case 'r': trigger_values |= probe_bit; case 'f': trigger_edge_mask |= probe_bit; break; default: sr_warn("Trigger type '%c' is not supported.", probe->trigger[0]); return SR_ERR_ARG; } } /* Store validated trigger setup. */ devc->trigger_mask = trigger_mask; devc->trigger_values = trigger_values; devc->trigger_edge_mask = trigger_edge_mask; } return SR_OK; } static int config_commit(const struct sr_dev_inst *sdi) { if (sdi->status != SR_ST_ACTIVE) { sr_err("Device not ready (status %d).", (int)sdi->status); return SR_ERR; } return lwla_set_clock_config(sdi); } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { GVariant *gvar; GVariantBuilder gvb; (void)sdi; (void)probe_group; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwopts, G_N_ELEMENTS(hwopts), sizeof(int32_t)); break; case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, G_N_ELEMENTS(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, G_N_ELEMENTS(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_TYPE: *data = g_variant_new_string(TRIGGER_TYPES); break; case SR_CONF_TRIGGER_SOURCE: *data = g_variant_new_strv(trigger_source_names, G_N_ELEMENTS(trigger_source_names)); break; case SR_CONF_TRIGGER_SLOPE: case SR_CONF_CLOCK_EDGE: *data = g_variant_new_strv(signal_edge_names, G_N_ELEMENTS(signal_edge_names)); break; default: return SR_ERR_NA; } return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct drv_context *drvc; struct dev_context *devc; struct acquisition_state *acq; int ret; (void)cb_data; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; drvc = di->priv; if (devc->acquisition) { sr_err("Acquisition still in progress?"); return SR_ERR; } acq = lwla_alloc_acquisition_state(); if (!acq) return SR_ERR_MALLOC; devc->stopping_in_progress = FALSE; devc->transfer_error = FALSE; sr_info("Starting acquisition."); devc->acquisition = acq; ret = lwla_setup_acquisition(sdi); if (ret != SR_OK) { sr_err("Failed to set up acquisition."); devc->acquisition = NULL; lwla_free_acquisition_state(acq); return ret; } ret = lwla_start_acquisition(sdi); if (ret != SR_OK) { sr_err("Failed to start acquisition."); devc->acquisition = NULL; lwla_free_acquisition_state(acq); return ret; } usb_source_add(drvc->sr_ctx, 100, &lwla_receive_data, (struct sr_dev_inst *)sdi); sr_info("Waiting for data."); /* Send header packet to the session bus. */ std_session_send_df_header(sdi, LOG_PREFIX); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { (void)cb_data; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; sr_dbg("Stopping acquisition."); sdi->status = SR_ST_STOPPING; return SR_OK; } SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = { .name = "sysclk-lwla", .longname = "SysClk LWLA series", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_probe_set = config_probe_set, .config_commit = config_commit, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };