/* * This file is part of the sigrok project. * * Copyright (C) 2011 Daniel Ribeiro * Copyright (C) 2012 Renato Caldas * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "link-mso19.h" #define USB_VENDOR "3195" #define USB_PRODUCT "f190" #define NUM_PROBES 8 static const int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, // SR_HWCAP_OSCILLOSCOPE, // SR_HWCAP_PAT_GENERATOR, SR_HWCAP_SAMPLERATE, // SR_HWCAP_CAPTURE_RATIO, SR_HWCAP_LIMIT_SAMPLES, 0, }; /* * Probes are numbered 0 to 7. * * See also: http://www.linkinstruments.com/images/mso19_1113.gif */ static const char *probe_names[NUM_PROBES + 1] = { "0", "1", "2", "3", "4", "5", "6", "7", NULL, }; static const uint64_t supported_samplerates[] = { SR_HZ(100), SR_HZ(200), SR_HZ(500), SR_KHZ(1), SR_KHZ(2), SR_KHZ(5), SR_KHZ(10), SR_KHZ(20), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(5), SR_MHZ(10), SR_MHZ(20), SR_MHZ(50), SR_MHZ(100), SR_MHZ(200), 0, }; static const struct sr_samplerates samplerates = { 0, 0, 0, supported_samplerates, }; static GSList *dev_insts = NULL; static int mso_send_control_message(struct sr_dev_inst *sdi, uint16_t payload[], int n) { int fd = sdi->serial->fd; int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot); char *p, *buf; ret = SR_ERR; if (fd < 0) goto ret; if (!(buf = g_try_malloc(s))) { sr_err("mso19: %s: buf malloc failed", __func__); ret = SR_ERR_MALLOC; goto ret; } p = buf; memcpy(p, mso_head, sizeof(mso_head)); p += sizeof(mso_head); for (i = 0; i < n; i++) { *(uint16_t *) p = htons(payload[i]); p += 2; } memcpy(p, mso_foot, sizeof(mso_foot)); w = 0; while (w < s) { ret = serial_write(fd, buf + w, s - w); if (ret < 0) { ret = SR_ERR; goto free; } w += ret; } ret = SR_OK; free: g_free(buf); ret: return ret; } static int mso_reset_adc(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; uint16_t ops[2]; ops[0] = mso_trans(REG_CTL1, (ctx->ctlbase1 | BIT_CTL1_RESETADC)); ops[1] = mso_trans(REG_CTL1, ctx->ctlbase1); ctx->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4; sr_dbg("mso19: Requesting ADC reset"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_reset_fsm(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; uint16_t ops[1]; ctx->ctlbase1 |= BIT_CTL1_RESETFSM; ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1); sr_dbg("mso19: Requesting ADC reset"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_toggle_led(struct sr_dev_inst *sdi, int state) { struct context *ctx = sdi->priv; uint16_t ops[1]; ctx->ctlbase1 &= ~BIT_CTL1_LED; if (state) ctx->ctlbase1 |= BIT_CTL1_LED; ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1); sr_dbg("mso19: Requesting LED toggle"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_check_trigger(struct sr_dev_inst *sdi, uint8_t *info) { uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) }; char buf[1]; int ret; sr_dbg("mso19: Requesting trigger state"); ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); if (info == NULL || ret != SR_OK) return ret; buf[0] = 0; if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */ ret = SR_ERR; *info = buf[0]; sr_dbg("mso19: Trigger state is: 0x%x", *info); return ret; } static int mso_read_buffer(struct sr_dev_inst *sdi) { uint16_t ops[] = { mso_trans(REG_BUFFER, 0) }; sr_dbg("mso19: Requesting buffer dump"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_arm(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; uint16_t ops[] = { mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETFSM), mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_ARM), mso_trans(REG_CTL1, ctx->ctlbase1), }; sr_dbg("mso19: Requesting trigger arm"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_force_capture(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; uint16_t ops[] = { mso_trans(REG_CTL1, ctx->ctlbase1 | 8), mso_trans(REG_CTL1, ctx->ctlbase1), }; sr_dbg("mso19: Requesting forced capture"); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_dac_out(struct sr_dev_inst *sdi, uint16_t val) { struct context *ctx = sdi->priv; uint16_t ops[] = { mso_trans(REG_DAC1, (val >> 8) & 0xff), mso_trans(REG_DAC2, val & 0xff), mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETADC), }; sr_dbg("mso19: Setting dac word to 0x%x", val); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_clkrate_out(struct sr_dev_inst *sdi, uint16_t val) { uint16_t ops[] = { mso_trans(REG_CLKRATE1, (val >> 8) & 0xff), mso_trans(REG_CLKRATE2, val & 0xff), }; sr_dbg("mso19: Setting clkrate word to 0x%x", val); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_configure_rate(struct sr_dev_inst *sdi, uint32_t rate) { struct context *ctx = sdi->priv; unsigned int i; int ret = SR_ERR; for (i = 0; i < ARRAY_SIZE(rate_map); i++) { if (rate_map[i].rate == rate) { ctx->ctlbase2 = rate_map[i].slowmode; ret = mso_clkrate_out(sdi, rate_map[i].val); if (ret == SR_OK) ctx->cur_rate = rate; return ret; } } return ret; } static inline uint16_t mso_calc_raw_from_mv(struct context *ctx) { return (uint16_t) (0x200 - ((ctx->dso_trigger_voltage / ctx->dso_probe_attn) / ctx->vbit)); } static int mso_configure_trigger(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; uint16_t ops[16]; uint16_t dso_trigger = mso_calc_raw_from_mv(ctx); dso_trigger &= 0x3ff; if ((!ctx->trigger_slope && ctx->trigger_chan == 1) || (ctx->trigger_slope && (ctx->trigger_chan == 0 || ctx->trigger_chan == 2 || ctx->trigger_chan == 3))) dso_trigger |= 0x400; switch (ctx->trigger_chan) { case 1: dso_trigger |= 0xe000; case 2: dso_trigger |= 0x4000; break; case 3: dso_trigger |= 0x2000; break; case 4: dso_trigger |= 0xa000; break; case 5: dso_trigger |= 0x8000; break; default: case 0: break; } switch (ctx->trigger_outsrc) { case 1: dso_trigger |= 0x800; break; case 2: dso_trigger |= 0x1000; break; case 3: dso_trigger |= 0x1800; break; } ops[0] = mso_trans(5, ctx->la_trigger); ops[1] = mso_trans(6, ctx->la_trigger_mask); ops[2] = mso_trans(3, dso_trigger & 0xff); ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff); ops[4] = mso_trans(11, ctx->dso_trigger_width / SR_HZ_TO_NS(ctx->cur_rate)); /* Select the SPI/I2C trigger config bank */ ops[5] = mso_trans(REG_CTL2, (ctx->ctlbase2 | BITS_CTL2_BANK(2))); /* Configure the SPI/I2C protocol trigger */ ops[6] = mso_trans(REG_PT_WORD(0), ctx->protocol_trigger.word[0]); ops[7] = mso_trans(REG_PT_WORD(1), ctx->protocol_trigger.word[1]); ops[8] = mso_trans(REG_PT_WORD(2), ctx->protocol_trigger.word[2]); ops[9] = mso_trans(REG_PT_WORD(3), ctx->protocol_trigger.word[3]); ops[10] = mso_trans(REG_PT_MASK(0), ctx->protocol_trigger.mask[0]); ops[11] = mso_trans(REG_PT_MASK(1), ctx->protocol_trigger.mask[1]); ops[12] = mso_trans(REG_PT_MASK(2), ctx->protocol_trigger.mask[2]); ops[13] = mso_trans(REG_PT_MASK(3), ctx->protocol_trigger.mask[3]); ops[14] = mso_trans(REG_PT_SPIMODE, ctx->protocol_trigger.spimode); /* Select the default config bank */ ops[15] = mso_trans(REG_CTL2, ctx->ctlbase2); return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops)); } static int mso_configure_threshold_level(struct sr_dev_inst *sdi) { struct context *ctx = sdi->priv; return mso_dac_out(sdi, la_threshold_map[ctx->la_threshold]); } static int mso_parse_serial(const char *iSerial, const char *iProduct, struct context *ctx) { unsigned int u1, u2, u3, u4, u5, u6; iProduct = iProduct; /* FIXME: This code is in the original app, but I think its * used only for the GUI */ /* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03")) ctx->num_sample_rates = 0x16; else ctx->num_sample_rates = 0x10; */ /* parse iSerial */ if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u", &u1, &u2, &u3, &u4, &u5, &u6) != 6) return SR_ERR; ctx->hwmodel = u4; ctx->hwrev = u5; ctx->serial = u6; ctx->vbit = u1 / 10000; if (ctx->vbit == 0) ctx->vbit = 4.19195; ctx->dac_offset = u2; if (ctx->dac_offset == 0) ctx->dac_offset = 0x1ff; ctx->offset_range = u3; if (ctx->offset_range == 0) ctx->offset_range = 0x17d; /* * FIXME: There is more code on the original software to handle * bigger iSerial strings, but as I can't test on my device * I will not implement it yet */ return SR_OK; } static int hw_init(const char *devinfo) { struct sr_dev_inst *sdi; int devcnt = 0; struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devs, *dev_list_entry; struct context *ctx; devinfo = devinfo; /* It's easier to map usb<->serial using udev */ /* * FIXME: On windows we can get the same information from the * registry, add an #ifdef here later */ udev = udev_new(); if (!udev) { sr_err("mso19: Failed to initialize udev."); goto ret; } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_subsystem(enumerate, "usb-serial"); udev_enumerate_scan_devices(enumerate); devs = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devs) { const char *syspath, *sysname, *idVendor, *idProduct, *iSerial, *iProduct; char path[32], manufacturer[32], product[32], hwrev[32]; struct udev_device *dev, *parent; size_t s; syspath = udev_list_entry_get_name(dev_list_entry); dev = udev_device_new_from_syspath(udev, syspath); sysname = udev_device_get_sysname(dev); parent = udev_device_get_parent_with_subsystem_devtype( dev, "usb", "usb_device"); if (!parent) { sr_err("mso19: Unable to find parent usb device for %s", sysname); continue; } idVendor = udev_device_get_sysattr_value(parent, "idVendor"); idProduct = udev_device_get_sysattr_value(parent, "idProduct"); if (strcmp(USB_VENDOR, idVendor) || strcmp(USB_PRODUCT, idProduct)) continue; iSerial = udev_device_get_sysattr_value(parent, "serial"); iProduct = udev_device_get_sysattr_value(parent, "product"); snprintf(path, sizeof(path), "/dev/%s", sysname); s = strcspn(iProduct, " "); if (s > sizeof(product) || strlen(iProduct) - s > sizeof(manufacturer)) { sr_err("mso19: Could not parse iProduct: %s", iProduct); continue; } strncpy(product, iProduct, s); product[s] = 0; strcpy(manufacturer, iProduct + s); if (!(ctx = g_try_malloc0(sizeof(struct context)))) { sr_err("mso19: %s: ctx malloc failed", __func__); continue; /* TODO: Errors handled correctly? */ } if (mso_parse_serial(iSerial, iProduct, ctx) != SR_OK) { sr_err("mso19: Invalid iSerial: %s", iSerial); goto err_free_ctx; } sprintf(hwrev, "r%d", ctx->hwrev); /* hardware initial state */ ctx->ctlbase1 = 0; { /* Initialize the protocol trigger configuration */ int i; for (i = 0; i < 4; i++) { ctx->protocol_trigger.word[i] = 0; ctx->protocol_trigger.mask[i] = 0xff; } ctx->protocol_trigger.spimode = 0; } sdi = sr_dev_inst_new(devcnt, SR_ST_INITIALIZING, manufacturer, product, hwrev); if (!sdi) { sr_err("mso19: Unable to create device instance for %s", sysname); goto err_free_ctx; } /* save a pointer to our private instance data */ sdi->priv = ctx; sdi->serial = sr_serial_dev_inst_new(path, -1); if (!sdi->serial) goto err_dev_inst_free; dev_insts = g_slist_append(dev_insts, sdi); devcnt++; continue; err_dev_inst_free: sr_dev_inst_free(sdi); err_free_ctx: g_free(ctx); } udev_enumerate_unref(enumerate); udev_unref(udev); ret: return devcnt; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; int ret; ret = SR_OK; /* Properly close all devices. */ for (l = dev_insts; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("mso19: %s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } if (sdi->serial->fd != -1) serial_close(sdi->serial->fd); sr_dev_inst_free(sdi); } g_slist_free(dev_insts); dev_insts = NULL; return ret; } static int hw_dev_open(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; int ret = SR_ERR; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return ret; ctx = sdi->priv; sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR); if (sdi->serial->fd == -1) return ret; ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2); if (ret != SR_OK) return ret; sdi->status = SR_ST_ACTIVE; /* FIXME: discard serial buffer */ mso_check_trigger(sdi, &ctx->trigger_state); sr_dbg("mso19: trigger state: 0x%x", ctx->trigger_state); ret = mso_reset_adc(sdi); if (ret != SR_OK) return ret; mso_check_trigger(sdi, &ctx->trigger_state); sr_dbg("mso19: trigger state: 0x%x", ctx->trigger_state); // ret = mso_reset_fsm(sdi); // if (ret != SR_OK) // return ret; sr_dbg("mso19: Finished %s", __func__); // return SR_ERR; return SR_OK; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("mso19: %s: sdi was NULL", __func__); return SR_ERR_BUG; } /* TODO */ if (sdi->serial->fd != -1) { serial_close(sdi->serial->fd); sdi->serial->fd = -1; sdi->status = SR_ST_INACTIVE; } sr_dbg("mso19: finished %s", __func__); return SR_OK; } static const void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; const void *info = NULL; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return NULL; ctx = sdi->priv; switch (dev_info_id) { case SR_DI_INST: info = sdi; break; case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */ info = GINT_TO_POINTER(NUM_PROBES); break; case SR_DI_PROBE_NAMES: info = probe_names; break; case SR_DI_SAMPLERATES: info = &samplerates; break; case SR_DI_TRIGGER_TYPES: info = "01"; /* FIXME */ break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_rate; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ST_NOT_FOUND; return sdi->status; } static const int *hw_hwcap_get_all(void) { return hwcaps; } static int hw_dev_config_set(int dev_index, int hwcap, const void *value) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; switch (hwcap) { case SR_HWCAP_SAMPLERATE: return mso_configure_rate(sdi, *(const uint64_t *) value); case SR_HWCAP_PROBECONFIG: case SR_HWCAP_LIMIT_SAMPLES: default: return SR_OK; /* FIXME */ } } #define MSO_TRIGGER_UNKNOWN '!' #define MSO_TRIGGER_UNKNOWN1 '1' #define MSO_TRIGGER_UNKNOWN2 '2' #define MSO_TRIGGER_UNKNOWN3 '3' #define MSO_TRIGGER_WAIT '4' #define MSO_TRIGGER_FIRED '5' #define MSO_TRIGGER_DATAREADY '6' /* FIXME: Pass errors? */ static int receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi = cb_data; struct context *ctx = sdi->priv; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; uint8_t in[1024], logic_out[1024]; double analog_out[1024]; size_t i, s; /* Avoid compiler warnings. */ (void)revents; s = serial_read(fd, in, sizeof(in)); if (s <= 0) return FALSE; /* No samples */ if (ctx->trigger_state != MSO_TRIGGER_DATAREADY) { ctx->trigger_state = in[0]; if (ctx->trigger_state == MSO_TRIGGER_DATAREADY) { mso_read_buffer(sdi); ctx->buffer_n = 0; } else { mso_check_trigger(sdi, NULL); } return FALSE; } /* the hardware always dumps 1024 samples, 24bits each */ if (ctx->buffer_n < 3072) { memcpy(ctx->buffer + ctx->buffer_n, in, s); ctx->buffer_n += s; } if (ctx->buffer_n < 3072) return FALSE; /* do the conversion */ for (i = 0; i < 1024; i++) { /* FIXME: Need to do conversion to mV */ analog_out[i] = (ctx->buffer[i * 3] & 0x3f) | ((ctx->buffer[i * 3 + 1] & 0xf) << 6); logic_out[i] = ((ctx->buffer[i * 3 + 1] & 0x30) >> 4) | ((ctx->buffer[i * 3 + 2] & 0x3f) << 2); } packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = 1024; logic.unitsize = 1; logic.data = logic_out; sr_session_send(ctx->session_dev_id, &packet); // Dont bother fixing this yet, keep it "old style" /* packet.type = SR_DF_ANALOG; packet.length = 1024; packet.unitsize = sizeof(double); packet.payload = analog_out; sr_session_send(ctx->session_dev_id, &packet); */ packet.type = SR_DF_END; sr_session_send(ctx->session_dev_id, &packet); return TRUE; } static int hw_dev_acquisition_start(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet packet; struct sr_datafeed_header header; int ret = SR_ERR; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return ret; ctx = sdi->priv; /* FIXME: No need to do full reconfigure every time */ // ret = mso_reset_fsm(sdi); // if (ret != SR_OK) // return ret; /* FIXME: ACDC Mode */ ctx->ctlbase1 &= 0x7f; // ctx->ctlbase1 |= ctx->acdcmode; ret = mso_configure_rate(sdi, ctx->cur_rate); if (ret != SR_OK) return ret; /* set dac offset */ ret = mso_dac_out(sdi, ctx->dac_offset); if (ret != SR_OK) return ret; ret = mso_configure_threshold_level(sdi); if (ret != SR_OK) return ret; ret = mso_configure_trigger(sdi); if (ret != SR_OK) return ret; /* FIXME: trigger_position */ /* END of config hardware part */ /* with trigger */ ret = mso_arm(sdi); if (ret != SR_OK) return ret; /* without trigger */ // ret = mso_force_capture(sdi); // if (ret != SR_OK) // return ret; mso_check_trigger(sdi, &ctx->trigger_state); ret = mso_check_trigger(sdi, NULL); if (ret != SR_OK) return ret; ctx->session_dev_id = cb_data; sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi); packet.type = SR_DF_HEADER; packet.payload = (unsigned char *) &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); header.samplerate = ctx->cur_rate; // header.num_analog_probes = 1; header.num_logic_probes = 8; sr_session_send(ctx->session_dev_id, &packet); return ret; } /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */ static int hw_dev_acquisition_stop(int dev_index, void *cb_data) { struct sr_datafeed_packet packet; /* Avoid compiler warnings. */ (void)dev_index; packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver link_mso19_driver_info = { .name = "link-mso19", .longname = "Link Instruments MSO-19", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };