/* * This file is part of the libsigrok project. * * Copyright (C) 2010-2012 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX SIGMA/SIGMA2 logic analyzer driver */ #include #include "protocol.h" /* * Channel numbers seem to go from 1-16, according to this image: * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg * (the cable has two additional GND pins, and a TI and TO pin) */ static const char *channel_names[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", }; static const uint32_t drvopts[] = { SR_CONF_LOGIC_ANALYZER, }; static const uint32_t devopts[] = { SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET, SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET, SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, #if ASIX_SIGMA_WITH_TRIGGER SR_CONF_TRIGGER_MATCH | SR_CONF_LIST, SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET, #endif }; static const int32_t trigger_matches[] = { SR_TRIGGER_ZERO, SR_TRIGGER_ONE, SR_TRIGGER_RISING, SR_TRIGGER_FALLING, }; static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear(di, sigma_clear_helper); } static GSList *scan(struct sr_dev_driver *di, GSList *options) { struct sr_dev_inst *sdi; struct dev_context *devc; struct ftdi_device_list *devlist; char serial_txt[10]; uint32_t serial; int ret; unsigned int i; (void)options; devc = g_malloc0(sizeof(struct dev_context)); ftdi_init(&devc->ftdic); /* Look for SIGMAs. */ if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist, USB_VENDOR, USB_PRODUCT)) <= 0) { if (ret < 0) sr_err("ftdi_usb_find_all(): %d", ret); goto free; } /* Make sure it's a version 1 or 2 SIGMA. */ ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0, serial_txt, sizeof(serial_txt)); sscanf(serial_txt, "%x", &serial); if (serial < 0xa6010000 || serial > 0xa602ffff) { sr_err("Only SIGMA and SIGMA2 are supported " "in this version of libsigrok."); goto free; } sr_info("Found ASIX SIGMA - Serial: %s", serial_txt); devc->cur_samplerate = samplerates[0]; devc->period_ps = 0; devc->limit_msec = 0; devc->limit_samples = 0; devc->cur_firmware = -1; devc->num_channels = 0; devc->samples_per_event = 0; devc->capture_ratio = 50; devc->use_triggers = 0; /* Register SIGMA device. */ sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->status = SR_ST_INITIALIZING; sdi->vendor = g_strdup(USB_VENDOR_NAME); sdi->model = g_strdup(USB_MODEL_NAME); for (i = 0; i < ARRAY_SIZE(channel_names); i++) sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, channel_names[i]); sdi->priv = devc; /* We will open the device again when we need it. */ ftdi_list_free(&devlist); return std_scan_complete(di, g_slist_append(NULL, sdi)); free: ftdi_deinit(&devc->ftdic); g_free(devc); return NULL; } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; devc = sdi->priv; /* Make sure it's an ASIX SIGMA. */ if ((ret = ftdi_usb_open_desc(&devc->ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { sr_err("ftdi_usb_open failed: %s", ftdi_get_error_string(&devc->ftdic)); return 0; } sdi->status = SR_ST_ACTIVE; return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; /* TODO */ if (sdi->status == SR_ST_ACTIVE) ftdi_usb_close(&devc->ftdic); sdi->status = SR_ST_INACTIVE; return SR_OK; } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; if (!sdi) return SR_ERR; devc = sdi->priv; switch (key) { case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_LIMIT_MSEC: *data = g_variant_new_uint64(devc->limit_msec); break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; #if ASIX_SIGMA_WITH_TRIGGER case SR_CONF_CAPTURE_RATIO: *data = g_variant_new_uint64(devc->capture_ratio); break; #endif default: return SR_ERR_NA; } return SR_OK; } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; uint64_t tmp; int ret; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; ret = SR_OK; switch (key) { case SR_CONF_SAMPLERATE: ret = sigma_set_samplerate(sdi, g_variant_get_uint64(data)); break; case SR_CONF_LIMIT_MSEC: tmp = g_variant_get_uint64(data); if (tmp > 0) devc->limit_msec = g_variant_get_uint64(data); else ret = SR_ERR; break; case SR_CONF_LIMIT_SAMPLES: tmp = g_variant_get_uint64(data); devc->limit_samples = tmp; devc->limit_msec = sigma_limit_samples_to_msec(devc, tmp); break; #if ASIX_SIGMA_WITH_TRIGGER case SR_CONF_CAPTURE_RATIO: tmp = g_variant_get_uint64(data); if (tmp > 100) return SR_ERR; devc->capture_ratio = tmp; break; #endif default: ret = SR_ERR_NA; } return ret; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar; GVariantBuilder gvb; (void)cg; switch (key) { case SR_CONF_DEVICE_OPTIONS: if (!sdi) *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t)); else *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, devopts, ARRAY_SIZE(devopts), sizeof(uint32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, samplerates_count, sizeof(samplerates[0])); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; #if ASIX_SIGMA_WITH_TRIGGER case SR_CONF_TRIGGER_MATCH: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, trigger_matches, ARRAY_SIZE(trigger_matches), sizeof(int32_t)); break; #endif default: return SR_ERR_NA; } return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct clockselect_50 clockselect; int frac, triggerpin, ret; uint8_t triggerselect; struct triggerinout triggerinout_conf; struct triggerlut lut; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; if (sigma_convert_trigger(sdi) != SR_OK) { sr_err("Failed to configure triggers."); return SR_ERR; } /* If the samplerate has not been set, default to 200 kHz. */ if (devc->cur_firmware == -1) { if ((ret = sigma_set_samplerate(sdi, SR_KHZ(200))) != SR_OK) return ret; } /* Enter trigger programming mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc); triggerselect = 0; if (devc->cur_samplerate >= SR_MHZ(100)) { /* 100 and 200 MHz mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc); /* Find which pin to trigger on from mask. */ for (triggerpin = 0; triggerpin < 8; triggerpin++) if ((devc->trigger.risingmask | devc->trigger.fallingmask) & (1 << triggerpin)) break; /* Set trigger pin and light LED on trigger. */ triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7); /* Default rising edge. */ if (devc->trigger.fallingmask) triggerselect |= 1 << 3; } else if (devc->cur_samplerate <= SR_MHZ(50)) { /* All other modes. */ sigma_build_basic_trigger(&lut, devc); sigma_write_trigger_lut(&lut, devc); triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0); } /* Setup trigger in and out pins to default values. */ memset(&triggerinout_conf, 0, sizeof(struct triggerinout)); triggerinout_conf.trgout_bytrigger = 1; triggerinout_conf.trgout_enable = 1; sigma_write_register(WRITE_TRIGGER_OPTION, (uint8_t *) &triggerinout_conf, sizeof(struct triggerinout), devc); /* Go back to normal mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc); /* Set clock select register. */ if (devc->cur_samplerate == SR_MHZ(200)) /* Enable 4 channels. */ sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc); else if (devc->cur_samplerate == SR_MHZ(100)) /* Enable 8 channels. */ sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc); else { /* * 50 MHz mode (or fraction thereof). Any fraction down to * 50 MHz / 256 can be used, but is not supported by sigrok API. */ frac = SR_MHZ(50) / devc->cur_samplerate - 1; clockselect.async = 0; clockselect.fraction = frac; clockselect.disabled_channels = 0; sigma_write_register(WRITE_CLOCK_SELECT, (uint8_t *) &clockselect, sizeof(clockselect), devc); } /* Setup maximum post trigger time. */ sigma_set_register(WRITE_POST_TRIGGER, (devc->capture_ratio * 255) / 100, devc); /* Start acqusition. */ gettimeofday(&devc->start_tv, 0); sigma_set_register(WRITE_MODE, 0x0d, devc); std_session_send_df_header(sdi); /* Add capture source. */ sr_session_source_add(sdi->session, -1, 0, 10, sigma_receive_data, (void *)sdi); devc->state.state = SIGMA_CAPTURE; return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; devc->state.state = SIGMA_IDLE; sr_session_source_remove(sdi->session, -1); return SR_OK; } static struct sr_dev_driver asix_sigma_driver_info = { .name = "asix-sigma", .longname = "ASIX SIGMA/SIGMA2", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);