/* * This file is part of the sigrok project. * * Copyright (C) 2011-2012 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "driver.h" static GSList *dev_insts = NULL; /* * The ChronoVu LA8 can have multiple PIDs. Older versions shipped with * a standard FTDI USB VID/PID of 0403:6001, newer ones have 0403:8867. */ static const uint16_t usb_pids[] = { 0x6001, 0x8867, }; /* Function prototypes. */ static int hw_dev_acquisition_stop(int dev_index, void *cb_data); static int hw_init(void) { /* Nothing to do. */ return SR_OK; } static int hw_scan(void) { int ret; struct sr_dev_inst *sdi; struct context *ctx; unsigned int i; /* Allocate memory for our private driver context. */ if (!(ctx = g_try_malloc(sizeof(struct context)))) { sr_err("la8: %s: struct context malloc failed", __func__); goto err_free_nothing; } /* Set some sane defaults. */ ctx->ftdic = NULL; ctx->cur_samplerate = SR_MHZ(100); /* 100MHz == max. samplerate */ ctx->limit_msec = 0; ctx->limit_samples = 0; ctx->session_dev_id = NULL; memset(ctx->mangled_buf, 0, BS); ctx->final_buf = NULL; ctx->trigger_pattern = 0x00; /* Value irrelevant, see trigger_mask. */ ctx->trigger_mask = 0x00; /* All probes are "don't care". */ ctx->trigger_timeout = 10; /* Default to 10s trigger timeout. */ ctx->trigger_found = 0; ctx->done = 0; ctx->block_counter = 0; ctx->divcount = 0; /* 10ns sample period == 100MHz samplerate */ ctx->usb_pid = 0; /* Allocate memory where we'll store the de-mangled data. */ if (!(ctx->final_buf = g_try_malloc(SDRAM_SIZE))) { sr_err("la8: %s: final_buf malloc failed", __func__); goto err_free_ctx; } /* Allocate memory for the FTDI context (ftdic) and initialize it. */ if (!(ctx->ftdic = ftdi_new())) { sr_err("la8: %s: ftdi_new failed", __func__); goto err_free_final_buf; } /* Check for the device and temporarily open it. */ for (i = 0; i < ARRAY_SIZE(usb_pids); i++) { sr_dbg("la8: Probing for VID/PID %04x:%04x.", USB_VENDOR_ID, usb_pids[i]); ret = ftdi_usb_open_desc(ctx->ftdic, USB_VENDOR_ID, usb_pids[i], USB_DESCRIPTION, NULL); if (ret == 0) { sr_dbg("la8: Found LA8 device (%04x:%04x).", USB_VENDOR_ID, usb_pids[i]); ctx->usb_pid = usb_pids[i]; } } if (ctx->usb_pid == 0) goto err_free_ftdic; /* Register the device with libsigrok. */ sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION); if (!sdi) { sr_err("la8: %s: sr_dev_inst_new failed", __func__); goto err_close_ftdic; } sdi->priv = ctx; dev_insts = g_slist_append(dev_insts, sdi); sr_spew("la8: Device init successful."); /* Close device. We'll reopen it again when we need it. */ (void) la8_close(ctx); /* Log, but ignore errors. */ return 1; err_close_ftdic: (void) la8_close(ctx); /* Log, but ignore errors. */ err_free_ftdic: free(ctx->ftdic); /* NOT g_free()! */ err_free_final_buf: g_free(ctx->final_buf); err_free_ctx: g_free(ctx); err_free_nothing: return 0; } static int hw_dev_open(int dev_index) { int ret; struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_dbg("la8: Opening LA8 device (%04x:%04x).", USB_VENDOR_ID, ctx->usb_pid); /* Open the device. */ if ((ret = ftdi_usb_open_desc(ctx->ftdic, USB_VENDOR_ID, ctx->usb_pid, USB_DESCRIPTION, NULL)) < 0) { sr_err("la8: %s: ftdi_usb_open_desc: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ return SR_ERR; } sr_dbg("la8: Device opened successfully."); /* Purge RX/TX buffers in the FTDI chip. */ if ((ret = ftdi_usb_purge_buffers(ctx->ftdic)) < 0) { sr_err("la8: %s: ftdi_usb_purge_buffers: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ goto err_dev_open_close_ftdic; } sr_dbg("la8: FTDI buffers purged successfully."); /* Enable flow control in the FTDI chip. */ if ((ret = ftdi_setflowctrl(ctx->ftdic, SIO_RTS_CTS_HS)) < 0) { sr_err("la8: %s: ftdi_setflowcontrol: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ goto err_dev_open_close_ftdic; } sr_dbg("la8: FTDI flow control enabled successfully."); /* Wait 100ms. */ g_usleep(100 * 1000); sdi->status = SR_ST_ACTIVE; return SR_OK; err_dev_open_close_ftdic: (void) la8_close(ctx); /* Log, but ignore errors. */ return SR_ERR; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_dbg("la8: Closing device."); if (sdi->status == SR_ST_ACTIVE) { sr_dbg("la8: Status ACTIVE, closing device."); /* TODO: Really ignore errors here, or return SR_ERR? */ (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } else { sr_spew("la8: Status not ACTIVE, nothing to do."); } sdi->status = SR_ST_INACTIVE; sr_dbg("la8: Freeing sample buffer."); g_free(ctx->final_buf); return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; int ret = SR_OK; /* Properly close all devices. */ for (l = dev_insts; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("la8: %s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } sr_dev_inst_free(sdi); /* Returns void. */ } g_slist_free(dev_insts); /* Returns void. */ dev_insts = NULL; return ret; } static const void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; const void *info; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return NULL; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return NULL; } sr_spew("la8: %s: dev_index %d, dev_info_id %d.", __func__, dev_index, dev_info_id); switch (dev_info_id) { case SR_DI_INST: info = sdi; sr_spew("la8: %s: Returning sdi.", __func__); break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(NUM_PROBES); sr_spew("la8: %s: Returning number of probes: %d.", __func__, NUM_PROBES); break; case SR_DI_PROBE_NAMES: info = probe_names; sr_spew("la8: %s: Returning probenames.", __func__); break; case SR_DI_SAMPLERATES: fill_supported_samplerates_if_needed(); info = &samplerates; sr_spew("la8: %s: Returning samplerates.", __func__); break; case SR_DI_TRIGGER_TYPES: info = TRIGGER_TYPES; sr_spew("la8: %s: Returning trigger types: %s.", __func__, TRIGGER_TYPES); break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_samplerate; sr_spew("la8: %s: Returning samplerate: %" PRIu64 "Hz.", __func__, ctx->cur_samplerate); break; default: /* Unknown device info ID, return NULL. */ sr_err("la8: %s: Unknown device info ID", __func__); info = NULL; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL, device not found", __func__); return SR_ST_NOT_FOUND; } sr_dbg("la8: Returning status: %d.", sdi->status); return sdi->status; } static const int *hw_hwcap_get_all(void) { sr_spew("la8: Returning list of device capabilities."); return hwcaps; } static int hw_dev_config_set(int dev_index, int hwcap, const void *value) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_spew("la8: %s: dev_index %d, hwcap %d", __func__, dev_index, hwcap); switch (hwcap) { case SR_HWCAP_SAMPLERATE: if (set_samplerate(sdi, *(const uint64_t *)value) == SR_ERR) { sr_err("la8: %s: setting samplerate failed.", __func__); return SR_ERR; } sr_dbg("la8: SAMPLERATE = %" PRIu64, ctx->cur_samplerate); break; case SR_HWCAP_PROBECONFIG: if (configure_probes(ctx, (const GSList *)value) != SR_OK) { sr_err("la8: %s: probe config failed.", __func__); return SR_ERR; } break; case SR_HWCAP_LIMIT_MSEC: if (*(const uint64_t *)value == 0) { sr_err("la8: %s: LIMIT_MSEC can't be 0.", __func__); return SR_ERR; } ctx->limit_msec = *(const uint64_t *)value; sr_dbg("la8: LIMIT_MSEC = %" PRIu64, ctx->limit_msec); break; case SR_HWCAP_LIMIT_SAMPLES: if (*(const uint64_t *)value < MIN_NUM_SAMPLES) { sr_err("la8: %s: LIMIT_SAMPLES too small.", __func__); return SR_ERR; } ctx->limit_samples = *(const uint64_t *)value; sr_dbg("la8: LIMIT_SAMPLES = %" PRIu64, ctx->limit_samples); break; default: /* Unknown capability, return SR_ERR. */ sr_err("la8: %s: Unknown capability.", __func__); return SR_ERR; break; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { int i, ret; struct sr_dev_inst *sdi; struct context *ctx; /* Avoid compiler errors. */ (void)fd; (void)revents; if (!(sdi = cb_data)) { sr_err("la8: %s: cb_data was NULL", __func__); return FALSE; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return FALSE; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return FALSE; } /* Get one block of data. */ if ((ret = la8_read_block(ctx)) < 0) { sr_err("la8: %s: la8_read_block error: %d", __func__, ret); hw_dev_acquisition_stop(sdi->index, sdi); return FALSE; } /* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */ if (ctx->block_counter != (NUM_BLOCKS - 1)) { ctx->block_counter++; return TRUE; } sr_dbg("la8: Sampling finished, sending data to session bus now."); /* All data was received and demangled, send it to the session bus. */ for (i = 0; i < NUM_BLOCKS; i++) send_block_to_session_bus(ctx, i); hw_dev_acquisition_stop(sdi->index, sdi); // return FALSE; /* FIXME? */ return TRUE; } static int hw_dev_acquisition_start(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet packet; struct sr_datafeed_header header; struct sr_datafeed_meta_logic meta; uint8_t buf[4]; int bytes_written; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_BUG; } ctx->divcount = samplerate_to_divcount(ctx->cur_samplerate); if (ctx->divcount == 0xff) { sr_err("la8: %s: invalid divcount/samplerate", __func__); return SR_ERR; } sr_dbg("la8: Starting acquisition."); /* Fill acquisition parameters into buf[]. */ buf[0] = ctx->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = ctx->trigger_pattern; buf[3] = ctx->trigger_mask; /* Start acquisition. */ bytes_written = la8_write(ctx, buf, 4); if (bytes_written < 0) { sr_err("la8: Acquisition failed to start."); return SR_ERR; } else if (bytes_written != 4) { sr_err("la8: Acquisition failed to start."); return SR_ERR; /* TODO: Other error and return code? */ } sr_dbg("la8: Acquisition started successfully."); ctx->session_dev_id = cb_data; /* Send header packet to the session bus. */ sr_dbg("la8: Sending SR_DF_HEADER."); packet.type = SR_DF_HEADER; packet.payload = &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); sr_session_send(ctx->session_dev_id, &packet); /* Send metadata about the SR_DF_LOGIC packets to come. */ packet.type = SR_DF_META_LOGIC; packet.payload = &meta; meta.samplerate = ctx->cur_samplerate; meta.num_probes = NUM_PROBES; sr_session_send(ctx->session_dev_id, &packet); /* Time when we should be done (for detecting trigger timeouts). */ ctx->done = (ctx->divcount + 1) * 0.08388608 + time(NULL) + ctx->trigger_timeout; ctx->block_counter = 0; ctx->trigger_found = 0; /* Hook up a dummy handler to receive data from the LA8. */ sr_source_add(-1, G_IO_IN, 0, receive_data, sdi); return SR_OK; } static int hw_dev_acquisition_stop(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet packet; sr_dbg("la8: Stopping acquisition."); if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } /* Send end packet to the session bus. */ sr_dbg("la8: Sending SR_DF_END."); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver chronovu_la8_driver_info = { .name = "chronovu-la8", .longname = "ChronoVu LA8", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .scan = hw_scan, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };