/* * This file is part of the libsigrok project. * * Copyright (C) 2012-2013 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "protocol.h" extern struct dmm_info udmms[]; /* * Driver for various UNI-T multimeters (and rebranded ones). * * Most UNI-T DMMs can be used with two (three) different PC interface cables: * - The UT-D04 USB/HID cable, old version with Hoitek HE2325U chip. * - The UT-D04 USB/HID cable, new version with WCH CH9325 chip. * - The UT-D02 RS232 cable. * * This driver is meant to support all USB/HID cables, and various DMMs that * can be attached to a PC via these cables. Currently only the UT-D04 cable * (new version) is supported/tested. * The UT-D02 RS232 cable is handled by the 'serial-dmm' driver. * * The data for one DMM packet (e.g. 14 bytes if the respective DMM uses a * Fortune Semiconductor FS9922-DMM4 chip) is spread across multiple * 8-byte chunks. * * An 8-byte chunk looks like this: * - Byte 0: 0xfz, where z is the number of actual data bytes in this chunk. * - Bytes 1-7: z data bytes, the rest of the bytes should be ignored. * * Example: * f0 00 00 00 00 00 00 00 (no data bytes) * f2 55 77 00 00 00 00 00 (2 data bytes, 0x55 and 0x77) * f1 d1 00 00 00 00 00 00 (1 data byte, 0xd1) */ static void decode_packet(struct sr_dev_inst *sdi, int dmm, const uint8_t *buf, void *info) { struct dev_context *devc; struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; float floatval; int ret; devc = sdi->priv; memset(&analog, 0, sizeof(struct sr_datafeed_analog)); /* Parse the protocol packet. */ ret = udmms[dmm].packet_parse(buf, &floatval, &analog, info); if (ret != SR_OK) { sr_dbg("Invalid DMM packet, ignoring."); return; } /* If this DMM needs additional handling, call the resp. function. */ if (udmms[dmm].dmm_details) udmms[dmm].dmm_details(&analog, info); /* Send a sample packet with one analog value. */ analog.channels = sdi->channels; analog.num_samples = 1; analog.data = &floatval; packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(devc->cb_data, &packet); /* Increase sample count. */ devc->num_samples++; } static int hid_chip_init(struct sr_dev_inst *sdi, uint16_t baudrate) { int ret; uint8_t buf[5]; struct sr_usb_dev_inst *usb; usb = sdi->conn; /* Detach kernel drivers which grabbed this device (if any). */ if (libusb_kernel_driver_active(usb->devhdl, 0) == 1) { ret = libusb_detach_kernel_driver(usb->devhdl, 0); if (ret < 0) { sr_err("Failed to detach kernel driver: %s.", libusb_error_name(ret)); return SR_ERR; } sr_dbg("Successfully detached kernel driver."); } else { sr_dbg("No need to detach a kernel driver."); } /* Claim interface 0. */ if ((ret = libusb_claim_interface(usb->devhdl, 0)) < 0) { sr_err("Failed to claim interface 0: %s.", libusb_error_name(ret)); return SR_ERR; } sr_dbg("Successfully claimed interface 0."); /* Set data for the HID feature report (e.g. baudrate). */ buf[0] = baudrate & 0xff; /* Baudrate, LSB */ buf[1] = (baudrate >> 8) & 0xff; /* Baudrate, MSB */ buf[2] = 0x00; /* Unknown/unused (?) */ buf[3] = 0x00; /* Unknown/unused (?) */ buf[4] = 0x03; /* Unknown, always 0x03. */ /* Send HID feature report to setup the baudrate/chip. */ sr_dbg("Sending initial HID feature report."); sr_spew("HID init = 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x (%d baud)", buf[0], buf[1], buf[2], buf[3], buf[4], baudrate); ret = libusb_control_transfer( usb->devhdl, /* libusb device handle */ LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE | LIBUSB_ENDPOINT_OUT, 9, /* bRequest: HID set_report */ 0x300, /* wValue: HID feature, report number 0 */ 0, /* wIndex: interface 0 */ (unsigned char *)&buf, /* payload buffer */ 5, /* wLength: 5 bytes payload */ 1000 /* timeout (ms) */); if (ret < 0) { sr_err("HID feature report error: %s.", libusb_error_name(ret)); return SR_ERR; } if (ret != 5) { /* TODO: Handle better by also sending the remaining bytes. */ sr_err("Short packet: sent %d/5 bytes.", ret); return SR_ERR; } sr_dbg("Successfully sent initial HID feature report."); return SR_OK; } static void log_8byte_chunk(const uint8_t *buf) { sr_spew("8-byte chunk: %02x %02x %02x %02x %02x %02x %02x %02x " "(%d data bytes)", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], (buf[0] & 0x0f)); } static void log_dmm_packet(const uint8_t *buf) { sr_dbg("DMM packet: %02x %02x %02x %02x %02x %02x %02x" " %02x %02x %02x %02x %02x %02x %02x", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); } static int get_and_handle_data(struct sr_dev_inst *sdi, int dmm, void *info) { struct dev_context *devc; uint8_t buf[CHUNK_SIZE], *pbuf; int i, ret, len, num_databytes_in_chunk; struct sr_usb_dev_inst *usb; devc = sdi->priv; usb = sdi->conn; pbuf = devc->protocol_buf; /* On the first run, we need to init the HID chip. */ if (devc->first_run) { if ((ret = hid_chip_init(sdi, udmms[dmm].baudrate)) != SR_OK) { sr_err("HID chip init failed: %d.", ret); return SR_ERR; } memset(pbuf, 0x00, DMM_BUFSIZE); devc->first_run = FALSE; } memset(&buf, 0x00, CHUNK_SIZE); /* Get data from EP2 using an interrupt transfer. */ ret = libusb_interrupt_transfer( usb->devhdl, /* libusb device handle */ LIBUSB_ENDPOINT_IN | 2, /* EP2, IN */ (unsigned char *)&buf, /* receive buffer */ CHUNK_SIZE, /* wLength */ &len, /* actually received byte count */ 1000 /* timeout (ms) */); if (ret < 0) { sr_err("USB receive error: %s.", libusb_error_name(ret)); return SR_ERR; } if (len != CHUNK_SIZE) { sr_err("Short packet: received %d/%d bytes.", len, CHUNK_SIZE); /* TODO: Print the bytes? */ return SR_ERR; } log_8byte_chunk((const uint8_t *)&buf); /* If there are no data bytes just return (without error). */ if (buf[0] == 0xf0) return SR_OK; devc->bufoffset = 0; /* * Append the 1-7 data bytes of this chunk to pbuf. * * Special case: * DMMs with Cyrustek ES51922 chip need serial settings of * 19230/7o1. The WCH CH9325 UART to USB/HID chip used in (some * versions of) the UNI-T UT-D04 cable however, will also send * the parity bit to the host in the 8-byte data chunks. This bit * is encoded in bit 7 of each of the 1-7 data bytes and must thus * be removed in order for the actual ES51922 protocol parser to * work properly. */ num_databytes_in_chunk = buf[0] & 0x0f; for (i = 0; i < num_databytes_in_chunk; i++, devc->buflen++) { pbuf[devc->buflen] = buf[1 + i]; if (udmms[dmm].packet_parse == sr_es519xx_19200_14b_parse) pbuf[devc->buflen] &= ~(1 << 7); } /* Now look for packets in that data. */ while ((devc->buflen - devc->bufoffset) >= udmms[dmm].packet_size) { if (udmms[dmm].packet_valid(pbuf + devc->bufoffset)) { log_dmm_packet(pbuf + devc->bufoffset); decode_packet(sdi, dmm, pbuf + devc->bufoffset, info); devc->bufoffset += udmms[dmm].packet_size; } else { devc->bufoffset++; } } /* Move remaining bytes to beginning of buffer. */ for (i = 0; i < devc->buflen - devc->bufoffset; i++) pbuf[i] = pbuf[devc->bufoffset + i]; devc->buflen -= devc->bufoffset; return SR_OK; } static int receive_data(int fd, int revents, int dmm, void *info, void *cb_data) { int ret; struct sr_dev_inst *sdi; struct dev_context *devc; int64_t time_ms; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if ((ret = get_and_handle_data(sdi, dmm, info)) != SR_OK) return FALSE; /* Abort acquisition if we acquired enough samples. */ if (devc->limit_samples && devc->num_samples >= devc->limit_samples) { sr_info("Requested number of samples reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); } if (devc->limit_msec) { time_ms = (g_get_monotonic_time() - devc->starttime) / 1000; if (time_ms > (int64_t)devc->limit_msec) { sr_info("Requested time limit reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); return TRUE; } } return TRUE; } #define RECEIVE_DATA(ID_UPPER, DMM_DRIVER) \ SR_PRIV int receive_data_##ID_UPPER(int fd, int revents, void *cb_data) { \ struct DMM_DRIVER##_info info; \ return receive_data(fd, revents, ID_UPPER, &info, cb_data); } /* Driver-specific receive_data() wrappers */ RECEIVE_DATA(TECPEL_DMM_8061, fs9721) RECEIVE_DATA(UNI_T_UT60A, fs9721) RECEIVE_DATA(UNI_T_UT60E, fs9721) RECEIVE_DATA(UNI_T_UT60G, es519xx) RECEIVE_DATA(UNI_T_UT61B, fs9922) RECEIVE_DATA(UNI_T_UT61C, fs9922) RECEIVE_DATA(UNI_T_UT61D, fs9922) RECEIVE_DATA(UNI_T_UT61E, es519xx) RECEIVE_DATA(VOLTCRAFT_VC820, fs9721) RECEIVE_DATA(VOLTCRAFT_VC830, fs9922) RECEIVE_DATA(VOLTCRAFT_VC840, fs9721) RECEIVE_DATA(TENMA_72_7745, es519xx) RECEIVE_DATA(TENMA_72_7750, es519xx)