/* * This file is part of the sigrok project. * * Copyright (C) 2010-2012 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX SIGMA/SIGMA2 logic analyzer driver */ #include #include #include #include #include "sigrok.h" #include "sigrok-internal.h" #include "asix-sigma.h" #define USB_VENDOR 0xa600 #define USB_PRODUCT 0xa000 #define USB_DESCRIPTION "ASIX SIGMA" #define USB_VENDOR_NAME "ASIX" #define USB_MODEL_NAME "SIGMA" #define USB_MODEL_VERSION "" #define TRIGGER_TYPES "rf10" #define NUM_PROBES 16 static GSList *dev_insts = NULL; static const uint64_t supported_samplerates[] = { SR_KHZ(200), SR_KHZ(250), SR_KHZ(500), SR_MHZ(1), SR_MHZ(5), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), SR_MHZ(100), SR_MHZ(200), 0, }; /* * Probe numbers seem to go from 1-16, according to this image: * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg * (the cable has two additional GND pins, and a TI and TO pin) */ static const char *probe_names[NUM_PROBES + 1] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", NULL, }; static const struct sr_samplerates samplerates = { 0, 0, 0, supported_samplerates, }; static const int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_CAPTURE_RATIO, SR_HWCAP_PROBECONFIG, SR_HWCAP_LIMIT_MSEC, 0, }; /* Force the FPGA to reboot. */ static uint8_t suicide[] = { 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, }; /* Prepare to upload firmware (FPGA specific). */ static uint8_t init[] = { 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, }; /* Initialize the logic analyzer mode. */ static uint8_t logic_mode_start[] = { 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40, 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38, }; static const char *firmware_files[] = { "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */ "asix-sigma-100.fw", /* 100 MHz */ "asix-sigma-200.fw", /* 200 MHz */ "asix-sigma-50sync.fw", /* Synchronous clock from pin */ "asix-sigma-phasor.fw", /* Frequency counter */ }; static int hw_dev_acquisition_stop(int dev_index, void *cb_data); static int sigma_read(void *buf, size_t size, struct context *ctx) { int ret; ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("sigma: ftdi_read_data failed: %s", ftdi_get_error_string(&ctx->ftdic)); } return ret; } static int sigma_write(void *buf, size_t size, struct context *ctx) { int ret; ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("sigma: ftdi_write_data failed: %s", ftdi_get_error_string(&ctx->ftdic)); } else if ((size_t) ret != size) { sr_err("sigma: ftdi_write_data did not complete write."); } return ret; } static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len, struct context *ctx) { size_t i; uint8_t buf[len + 2]; int idx = 0; buf[idx++] = REG_ADDR_LOW | (reg & 0xf); buf[idx++] = REG_ADDR_HIGH | (reg >> 4); for (i = 0; i < len; ++i) { buf[idx++] = REG_DATA_LOW | (data[i] & 0xf); buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4); } return sigma_write(buf, idx, ctx); } static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx) { return sigma_write_register(reg, &value, 1, ctx); } static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len, struct context *ctx) { uint8_t buf[3]; buf[0] = REG_ADDR_LOW | (reg & 0xf); buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[2] = REG_READ_ADDR; sigma_write(buf, sizeof(buf), ctx); return sigma_read(data, len, ctx); } static uint8_t sigma_get_register(uint8_t reg, struct context *ctx) { uint8_t value; if (1 != sigma_read_register(reg, &value, 1, ctx)) { sr_err("sigma: sigma_get_register: 1 byte expected"); return 0; } return value; } static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos, struct context *ctx) { uint8_t buf[] = { REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, }; uint8_t result[6]; sigma_write(buf, sizeof(buf), ctx); sigma_read(result, sizeof(result), ctx); *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16); *stoppos = result[3] | (result[4] << 8) | (result[5] << 16); /* Not really sure why this must be done, but according to spec. */ if ((--*stoppos & 0x1ff) == 0x1ff) stoppos -= 64; if ((*--triggerpos & 0x1ff) == 0x1ff) triggerpos -= 64; return 1; } static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data, struct context *ctx) { size_t i; uint8_t buf[4096]; int idx = 0; /* Send the startchunk. Index start with 1. */ buf[0] = startchunk >> 8; buf[1] = startchunk & 0xff; sigma_write_register(WRITE_MEMROW, buf, 2, ctx); /* Read the DRAM. */ buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_WAIT_ACK; for (i = 0; i < numchunks; ++i) { /* Alternate bit to copy from DRAM to cache. */ if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4); buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4); if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_WAIT_ACK; } sigma_write(buf, idx, ctx); return sigma_read(data, numchunks * CHUNK_SIZE, ctx); } /* Upload trigger look-up tables to Sigma. */ static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx) { int i; uint8_t tmp[2]; uint16_t bit; /* Transpose the table and send to Sigma. */ for (i = 0; i < 16; ++i) { bit = 1 << i; tmp[0] = tmp[1] = 0; if (lut->m2d[0] & bit) tmp[0] |= 0x01; if (lut->m2d[1] & bit) tmp[0] |= 0x02; if (lut->m2d[2] & bit) tmp[0] |= 0x04; if (lut->m2d[3] & bit) tmp[0] |= 0x08; if (lut->m3 & bit) tmp[0] |= 0x10; if (lut->m3s & bit) tmp[0] |= 0x20; if (lut->m4 & bit) tmp[0] |= 0x40; if (lut->m0d[0] & bit) tmp[1] |= 0x01; if (lut->m0d[1] & bit) tmp[1] |= 0x02; if (lut->m0d[2] & bit) tmp[1] |= 0x04; if (lut->m0d[3] & bit) tmp[1] |= 0x08; if (lut->m1d[0] & bit) tmp[1] |= 0x10; if (lut->m1d[1] & bit) tmp[1] |= 0x20; if (lut->m1d[2] & bit) tmp[1] |= 0x40; if (lut->m1d[3] & bit) tmp[1] |= 0x80; sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp), ctx); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx); } /* Send the parameters */ sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params, sizeof(lut->params), ctx); return SR_OK; } /* Generate the bitbang stream for programming the FPGA. */ static int bin2bitbang(const char *filename, unsigned char **buf, size_t *buf_size) { FILE *f; unsigned long file_size; unsigned long offset = 0; unsigned char *p; uint8_t *firmware; unsigned long fwsize = 0; const int buffer_size = 65536; size_t i; int c, bit, v; uint32_t imm = 0x3f6df2ab; f = g_fopen(filename, "rb"); if (!f) { sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename); return SR_ERR; } if (-1 == fseek(f, 0, SEEK_END)) { sr_err("sigma: fseek on %s failed", filename); fclose(f); return SR_ERR; } file_size = ftell(f); fseek(f, 0, SEEK_SET); if (!(firmware = g_try_malloc(buffer_size))) { sr_err("sigma: %s: firmware malloc failed", __func__); fclose(f); return SR_ERR_MALLOC; } while ((c = getc(f)) != EOF) { imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); firmware[fwsize++] = c ^ imm; } fclose(f); if(fwsize != file_size) { sr_err("sigma: %s: Error reading firmware", filename); fclose(f); g_free(firmware); return SR_ERR; } *buf_size = fwsize * 2 * 8; *buf = p = (unsigned char *)g_try_malloc(*buf_size); if (!p) { sr_err("sigma: %s: buf/p malloc failed", __func__); g_free(firmware); return SR_ERR_MALLOC; } for (i = 0; i < fwsize; ++i) { for (bit = 7; bit >= 0; --bit) { v = firmware[i] & 1 << bit ? 0x40 : 0x00; p[offset++] = v | 0x01; p[offset++] = v; } } g_free(firmware); if (offset != *buf_size) { g_free(*buf); sr_err("sigma: Error reading firmware %s " "offset=%ld, file_size=%ld, buf_size=%zd.", filename, offset, file_size, *buf_size); return SR_ERR; } return SR_OK; } static int hw_init(const char *devinfo) { struct sr_dev_inst *sdi; struct context *ctx; struct ftdi_device_list *devlist; char serial_txt[10]; uint32_t serial; /* Avoid compiler warnings. */ (void)devinfo; if (!(ctx = g_try_malloc(sizeof(struct context)))) { sr_err("sigma: %s: ctx malloc failed", __func__); return SR_ERR_MALLOC; } ftdi_init(&ctx->ftdic); /* Look for SIGMAs. */ if (ftdi_usb_find_all(&ctx->ftdic, &devlist, USB_VENDOR, USB_PRODUCT) <= 0) goto free; /* Make sure it's a version 1 or 2 SIGMA. */ ftdi_usb_get_strings(&ctx->ftdic, devlist->dev, NULL, 0, NULL, 0, serial_txt, sizeof(serial_txt)); sscanf(serial_txt, "%x", &serial); if (serial < 0xa6010000 || serial > 0xa602ffff) { sr_err("sigma: Only SIGMA and SIGMA2 are supported " "in this version of sigrok."); goto free; } sr_info("Found ASIX SIGMA - Serial: %s", serial_txt); ctx->cur_samplerate = 0; ctx->period_ps = 0; ctx->limit_msec = 0; ctx->cur_firmware = -1; ctx->num_probes = 0; ctx->samples_per_event = 0; ctx->capture_ratio = 50; ctx->use_triggers = 0; /* Register SIGMA device. */ if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION))) { sr_err("sigma: %s: sdi was NULL", __func__); goto free; } sdi->priv = ctx; dev_insts = g_slist_append(dev_insts, sdi); /* We will open the device again when we need it. */ ftdi_list_free(&devlist); return 1; free: g_free(ctx); return 0; } static int upload_firmware(int firmware_idx, struct context *ctx) { int ret; unsigned char *buf; unsigned char pins; size_t buf_size; unsigned char result[32]; char firmware_path[128]; /* Make sure it's an ASIX SIGMA. */ if ((ret = ftdi_usb_open_desc(&ctx->ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { sr_err("sigma: ftdi_usb_open failed: %s", ftdi_get_error_string(&ctx->ftdic)); return 0; } if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) { sr_err("sigma: ftdi_set_bitmode failed: %s", ftdi_get_error_string(&ctx->ftdic)); return 0; } /* Four times the speed of sigmalogan - Works well. */ if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) { sr_err("sigma: ftdi_set_baudrate failed: %s", ftdi_get_error_string(&ctx->ftdic)); return 0; } /* Force the FPGA to reboot. */ sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), ctx); /* Prepare to upload firmware (FPGA specific). */ sigma_write(init, sizeof(init), ctx); ftdi_usb_purge_buffers(&ctx->ftdic); /* Wait until the FPGA asserts INIT_B. */ while (1) { ret = sigma_read(result, 1, ctx); if (result[0] & 0x20) break; } /* Prepare firmware. */ snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR, firmware_files[firmware_idx]); if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) { sr_err("sigma: An error occured while reading the firmware: %s", firmware_path); return ret; } /* Upload firmare. */ sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]); sigma_write(buf, buf_size, ctx); g_free(buf); if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) { sr_err("sigma: ftdi_set_bitmode failed: %s", ftdi_get_error_string(&ctx->ftdic)); return SR_ERR; } ftdi_usb_purge_buffers(&ctx->ftdic); /* Discard garbage. */ while (1 == sigma_read(&pins, 1, ctx)) ; /* Initialize the logic analyzer mode. */ sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx); /* Expect a 3 byte reply. */ ret = sigma_read(result, 3, ctx); if (ret != 3 || result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) { sr_err("sigma: Configuration failed. Invalid reply received."); return SR_ERR; } ctx->cur_firmware = firmware_idx; sr_info("sigma: Firmware uploaded"); return SR_OK; } static int hw_dev_open(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; int ret; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; /* Make sure it's an ASIX SIGMA. */ if ((ret = ftdi_usb_open_desc(&ctx->ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { sr_err("sigma: ftdi_usb_open failed: %s", ftdi_get_error_string(&ctx->ftdic)); return 0; } sdi->status = SR_ST_ACTIVE; return SR_OK; } static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate) { int i, ret; struct context *ctx = sdi->priv; for (i = 0; supported_samplerates[i]; i++) { if (supported_samplerates[i] == samplerate) break; } if (supported_samplerates[i] == 0) return SR_ERR_SAMPLERATE; if (samplerate <= SR_MHZ(50)) { ret = upload_firmware(0, ctx); ctx->num_probes = 16; } if (samplerate == SR_MHZ(100)) { ret = upload_firmware(1, ctx); ctx->num_probes = 8; } else if (samplerate == SR_MHZ(200)) { ret = upload_firmware(2, ctx); ctx->num_probes = 4; } ctx->cur_samplerate = samplerate; ctx->period_ps = 1000000000000 / samplerate; ctx->samples_per_event = 16 / ctx->num_probes; ctx->state.state = SIGMA_IDLE; return ret; } /* * In 100 and 200 MHz mode, only a single pin rising/falling can be * set as trigger. In other modes, two rising/falling triggers can be set, * in addition to value/mask trigger for any number of probes. * * The Sigma supports complex triggers using boolean expressions, but this * has not been implemented yet. */ static int configure_probes(struct sr_dev_inst *sdi, const GSList *probes) { struct context *ctx = sdi->priv; const struct sr_probe *probe; const GSList *l; int trigger_set = 0; int probebit; memset(&ctx->trigger, 0, sizeof(struct sigma_trigger)); for (l = probes; l; l = l->next) { probe = (struct sr_probe *)l->data; probebit = 1 << (probe->index - 1); if (!probe->enabled || !probe->trigger) continue; if (ctx->cur_samplerate >= SR_MHZ(100)) { /* Fast trigger support. */ if (trigger_set) { sr_err("sigma: ASIX SIGMA only supports a single " "pin trigger in 100 and 200MHz mode."); return SR_ERR; } if (probe->trigger[0] == 'f') ctx->trigger.fallingmask |= probebit; else if (probe->trigger[0] == 'r') ctx->trigger.risingmask |= probebit; else { sr_err("sigma: ASIX SIGMA only supports " "rising/falling trigger in 100 " "and 200MHz mode."); return SR_ERR; } ++trigger_set; } else { /* Simple trigger support (event). */ if (probe->trigger[0] == '1') { ctx->trigger.simplevalue |= probebit; ctx->trigger.simplemask |= probebit; } else if (probe->trigger[0] == '0') { ctx->trigger.simplevalue &= ~probebit; ctx->trigger.simplemask |= probebit; } else if (probe->trigger[0] == 'f') { ctx->trigger.fallingmask |= probebit; ++trigger_set; } else if (probe->trigger[0] == 'r') { ctx->trigger.risingmask |= probebit; ++trigger_set; } /* * Actually, Sigma supports 2 rising/falling triggers, * but they are ORed and the current trigger syntax * does not permit ORed triggers. */ if (trigger_set > 1) { sr_err("sigma: ASIX SIGMA only supports 1 " "rising/falling triggers."); return SR_ERR; } } if (trigger_set) ctx->use_triggers = 1; } return SR_OK; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("sigma: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("sigma: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } /* TODO */ if (sdi->status == SR_ST_ACTIVE) ftdi_usb_close(&ctx->ftdic); sdi->status = SR_ST_INACTIVE; return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; int ret = SR_OK; /* Properly close all devices. */ for (l = dev_insts; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("sigma: %s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } sr_dev_inst_free(sdi); } g_slist_free(dev_insts); dev_insts = NULL; return ret; } static const void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; const void *info = NULL; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("sigma: %s: sdi was NULL", __func__); return NULL; } ctx = sdi->priv; switch (dev_info_id) { case SR_DI_INST: info = sdi; break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(NUM_PROBES); break; case SR_DI_PROBE_NAMES: info = probe_names; break; case SR_DI_SAMPLERATES: info = &samplerates; break; case SR_DI_TRIGGER_TYPES: info = (char *)TRIGGER_TYPES; break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_samplerate; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; sdi = sr_dev_inst_get(dev_insts, dev_index); if (sdi) return sdi->status; else return SR_ST_NOT_FOUND; } static const int *hw_hwcap_get_all(void) { return hwcaps; } static int hw_dev_config_set(int dev_index, int hwcap, const void *value) { struct sr_dev_inst *sdi; struct context *ctx; int ret; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; if (hwcap == SR_HWCAP_SAMPLERATE) { ret = set_samplerate(sdi, *(const uint64_t *)value); } else if (hwcap == SR_HWCAP_PROBECONFIG) { ret = configure_probes(sdi, value); } else if (hwcap == SR_HWCAP_LIMIT_MSEC) { ctx->limit_msec = *(const uint64_t *)value; if (ctx->limit_msec > 0) ret = SR_OK; else ret = SR_ERR; } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) { ctx->capture_ratio = *(const uint64_t *)value; if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100) ret = SR_ERR; else ret = SR_OK; } else { ret = SR_ERR; } return ret; } /* Software trigger to determine exact trigger position. */ static int get_trigger_offset(uint16_t *samples, uint16_t last_sample, struct sigma_trigger *t) { int i; for (i = 0; i < 8; ++i) { if (i > 0) last_sample = samples[i-1]; /* Simple triggers. */ if ((samples[i] & t->simplemask) != t->simplevalue) continue; /* Rising edge. */ if ((last_sample & t->risingmask) != 0 || (samples[i] & t->risingmask) != t->risingmask) continue; /* Falling edge. */ if ((last_sample & t->fallingmask) != t->fallingmask || (samples[i] & t->fallingmask) != 0) continue; break; } /* If we did not match, return original trigger pos. */ return i & 0x7; } /* * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. * Each event is 20ns apart, and can contain multiple samples. * * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. * For 50 MHz and below, events contain one sample for each channel, * spread 20 ns apart. */ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts, uint16_t *lastsample, int triggerpos, uint16_t limit_chunk, void *cb_data) { struct sr_dev_inst *sdi = cb_data; struct context *ctx = sdi->priv; uint16_t tsdiff, ts; uint16_t samples[65536 * ctx->samples_per_event]; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; int i, j, k, l, numpad, tosend; size_t n = 0, sent = 0; int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event; uint16_t *event; uint16_t cur_sample; int triggerts = -1; /* Check if trigger is in this chunk. */ if (triggerpos != -1) { if (ctx->cur_samplerate <= SR_MHZ(50)) triggerpos -= EVENTS_PER_CLUSTER - 1; if (triggerpos < 0) triggerpos = 0; /* Find in which cluster the trigger occured. */ triggerts = triggerpos / 7; } /* For each ts. */ for (i = 0; i < 64; ++i) { ts = *(uint16_t *) &buf[i * 16]; tsdiff = ts - *lastts; *lastts = ts; /* Decode partial chunk. */ if (limit_chunk && ts > limit_chunk) return SR_OK; /* Pad last sample up to current point. */ numpad = tsdiff * ctx->samples_per_event - clustersize; if (numpad > 0) { for (j = 0; j < numpad; ++j) samples[j] = *lastsample; n = numpad; } /* Send samples between previous and this timestamp to sigrok. */ sent = 0; while (sent < n) { tosend = MIN(2048, n - sent); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = tosend * sizeof(uint16_t); logic.unitsize = 2; logic.data = samples + sent; sr_session_send(ctx->session_dev_id, &packet); sent += tosend; } n = 0; event = (uint16_t *) &buf[i * 16 + 2]; cur_sample = 0; /* For each event in cluster. */ for (j = 0; j < 7; ++j) { /* For each sample in event. */ for (k = 0; k < ctx->samples_per_event; ++k) { cur_sample = 0; /* For each probe. */ for (l = 0; l < ctx->num_probes; ++l) cur_sample |= (!!(event[j] & (1 << (l * ctx->samples_per_event + k)))) << l; samples[n++] = cur_sample; } } /* Send data up to trigger point (if triggered). */ sent = 0; if (i == triggerts) { /* * Trigger is not always accurate to sample because of * pipeline delay. However, it always triggers before * the actual event. We therefore look at the next * samples to pinpoint the exact position of the trigger. */ tosend = get_trigger_offset(samples, *lastsample, &ctx->trigger); if (tosend > 0) { packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = tosend * sizeof(uint16_t); logic.unitsize = 2; logic.data = samples; sr_session_send(ctx->session_dev_id, &packet); sent += tosend; } /* Only send trigger if explicitly enabled. */ if (ctx->use_triggers) { packet.type = SR_DF_TRIGGER; sr_session_send(ctx->session_dev_id, &packet); } } /* Send rest of the chunk to sigrok. */ tosend = n - sent; if (tosend > 0) { packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = tosend * sizeof(uint16_t); logic.unitsize = 2; logic.data = samples + sent; sr_session_send(ctx->session_dev_id, &packet); } *lastsample = samples[n - 1]; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi = cb_data; struct context *ctx = sdi->priv; struct sr_datafeed_packet packet; const int chunks_per_read = 32; unsigned char buf[chunks_per_read * CHUNK_SIZE]; int bufsz, numchunks, i, newchunks; uint64_t running_msec; struct timeval tv; /* Avoid compiler warnings. */ (void)fd; (void)revents; /* Get the current position. */ sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx); numchunks = (ctx->state.stoppos + 511) / 512; if (ctx->state.state == SIGMA_IDLE) return TRUE; if (ctx->state.state == SIGMA_CAPTURE) { /* Check if the timer has expired, or memory is full. */ gettimeofday(&tv, 0); running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 + (tv.tv_usec - ctx->start_tv.tv_usec) / 1000; if (running_msec < ctx->limit_msec && numchunks < 32767) return TRUE; /* While capturing... */ else hw_dev_acquisition_stop(sdi->index, sdi); } else if (ctx->state.state == SIGMA_DOWNLOAD) { if (ctx->state.chunks_downloaded >= numchunks) { /* End of samples. */ packet.type = SR_DF_END; sr_session_send(ctx->session_dev_id, &packet); ctx->state.state = SIGMA_IDLE; return TRUE; } newchunks = MIN(chunks_per_read, numchunks - ctx->state.chunks_downloaded); sr_info("sigma: Downloading sample data: %.0f %%", 100.0 * ctx->state.chunks_downloaded / numchunks); bufsz = sigma_read_dram(ctx->state.chunks_downloaded, newchunks, buf, ctx); /* TODO: Check bufsz. For now, just avoid compiler warnings. */ (void)bufsz; /* Find first ts. */ if (ctx->state.chunks_downloaded == 0) { ctx->state.lastts = *(uint16_t *) buf - 1; ctx->state.lastsample = 0; } /* Decode chunks and send them to sigrok. */ for (i = 0; i < newchunks; ++i) { int limit_chunk = 0; /* The last chunk may potentially be only in part. */ if (ctx->state.chunks_downloaded == numchunks - 1) { /* Find the last valid timestamp */ limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts; } if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk) decode_chunk_ts(buf + (i * CHUNK_SIZE), &ctx->state.lastts, &ctx->state.lastsample, ctx->state.triggerpos & 0x1ff, limit_chunk, sdi); else decode_chunk_ts(buf + (i * CHUNK_SIZE), &ctx->state.lastts, &ctx->state.lastsample, -1, limit_chunk, sdi); ++ctx->state.chunks_downloaded; } } return TRUE; } /* Build a LUT entry used by the trigger functions. */ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) { int i, j, k, bit; /* For each quad probe. */ for (i = 0; i < 4; ++i) { entry[i] = 0xffff; /* For each bit in LUT. */ for (j = 0; j < 16; ++j) /* For each probe in quad. */ for (k = 0; k < 4; ++k) { bit = 1 << (i * 4 + k); /* Set bit in entry */ if ((mask & bit) && ((!(value & bit)) != (!(j & (1 << k))))) entry[i] &= ~(1 << j); } } } /* Add a logical function to LUT mask. */ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, int index, int neg, uint16_t *mask) { int i, j; int x[2][2], tmp, a, b, aset, bset, rset; memset(x, 0, 4 * sizeof(int)); /* Trigger detect condition. */ switch (oper) { case OP_LEVEL: x[0][1] = 1; x[1][1] = 1; break; case OP_NOT: x[0][0] = 1; x[1][0] = 1; break; case OP_RISE: x[0][1] = 1; break; case OP_FALL: x[1][0] = 1; break; case OP_RISEFALL: x[0][1] = 1; x[1][0] = 1; break; case OP_NOTRISE: x[1][1] = 1; x[0][0] = 1; x[1][0] = 1; break; case OP_NOTFALL: x[1][1] = 1; x[0][0] = 1; x[0][1] = 1; break; case OP_NOTRISEFALL: x[1][1] = 1; x[0][0] = 1; break; } /* Transpose if neg is set. */ if (neg) { for (i = 0; i < 2; ++i) { for (j = 0; j < 2; ++j) { tmp = x[i][j]; x[i][j] = x[1-i][1-j]; x[1-i][1-j] = tmp; } } } /* Update mask with function. */ for (i = 0; i < 16; ++i) { a = (i >> (2 * index + 0)) & 1; b = (i >> (2 * index + 1)) & 1; aset = (*mask >> i) & 1; bset = x[b][a]; if (func == FUNC_AND || func == FUNC_NAND) rset = aset & bset; else if (func == FUNC_OR || func == FUNC_NOR) rset = aset | bset; else if (func == FUNC_XOR || func == FUNC_NXOR) rset = aset ^ bset; if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR) rset = !rset; *mask &= ~(1 << i); if (rset) *mask |= 1 << i; } } /* * Build trigger LUTs used by 50 MHz and lower sample rates for supporting * simple pin change and state triggers. Only two transitions (rise/fall) can be * set at any time, but a full mask and value can be set (0/1). */ static int build_basic_trigger(struct triggerlut *lut, struct context *ctx) { int i,j; uint16_t masks[2] = { 0, 0 }; memset(lut, 0, sizeof(struct triggerlut)); /* Contant for simple triggers. */ lut->m4 = 0xa000; /* Value/mask trigger support. */ build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask, lut->m2d); /* Rise/fall trigger support. */ for (i = 0, j = 0; i < 16; ++i) { if (ctx->trigger.risingmask & (1 << i) || ctx->trigger.fallingmask & (1 << i)) masks[j++] = 1 << i; } build_lut_entry(masks[0], masks[0], lut->m0d); build_lut_entry(masks[1], masks[1], lut->m1d); /* Add glue logic */ if (masks[0] || masks[1]) { /* Transition trigger. */ if (masks[0] & ctx->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); if (masks[0] & ctx->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); if (masks[1] & ctx->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); if (masks[1] & ctx->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); } else { /* Only value/mask trigger. */ lut->m3 = 0xffff; } /* Triggertype: event. */ lut->params.selres = 3; return SR_OK; } static int hw_dev_acquisition_start(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet *packet; struct sr_datafeed_header *header; struct sr_datafeed_meta_logic meta; struct clockselect_50 clockselect; int frac, triggerpin, ret; uint8_t triggerselect; struct triggerinout triggerinout_conf; struct triggerlut lut; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; /* If the samplerate has not been set, default to 200 kHz. */ if (ctx->cur_firmware == -1) { if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK) return ret; } /* Enter trigger programming mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx); /* 100 and 200 MHz mode. */ if (ctx->cur_samplerate >= SR_MHZ(100)) { sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx); /* Find which pin to trigger on from mask. */ for (triggerpin = 0; triggerpin < 8; ++triggerpin) if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) & (1 << triggerpin)) break; /* Set trigger pin and light LED on trigger. */ triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7); /* Default rising edge. */ if (ctx->trigger.fallingmask) triggerselect |= 1 << 3; /* All other modes. */ } else if (ctx->cur_samplerate <= SR_MHZ(50)) { build_basic_trigger(&lut, ctx); sigma_write_trigger_lut(&lut, ctx); triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0); } /* Setup trigger in and out pins to default values. */ memset(&triggerinout_conf, 0, sizeof(struct triggerinout)); triggerinout_conf.trgout_bytrigger = 1; triggerinout_conf.trgout_enable = 1; sigma_write_register(WRITE_TRIGGER_OPTION, (uint8_t *) &triggerinout_conf, sizeof(struct triggerinout), ctx); /* Go back to normal mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx); /* Set clock select register. */ if (ctx->cur_samplerate == SR_MHZ(200)) /* Enable 4 probes. */ sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx); else if (ctx->cur_samplerate == SR_MHZ(100)) /* Enable 8 probes. */ sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx); else { /* * 50 MHz mode (or fraction thereof). Any fraction down to * 50 MHz / 256 can be used, but is not supported by sigrok API. */ frac = SR_MHZ(50) / ctx->cur_samplerate - 1; clockselect.async = 0; clockselect.fraction = frac; clockselect.disabled_probes = 0; sigma_write_register(WRITE_CLOCK_SELECT, (uint8_t *) &clockselect, sizeof(clockselect), ctx); } /* Setup maximum post trigger time. */ sigma_set_register(WRITE_POST_TRIGGER, (ctx->capture_ratio * 255) / 100, ctx); /* Start acqusition. */ gettimeofday(&ctx->start_tv, 0); sigma_set_register(WRITE_MODE, 0x0d, ctx); ctx->session_dev_id = cb_data; if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) { sr_err("sigma: %s: packet malloc failed.", __func__); return SR_ERR_MALLOC; } if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) { sr_err("sigma: %s: header malloc failed.", __func__); return SR_ERR_MALLOC; } /* Send header packet to the session bus. */ packet->type = SR_DF_HEADER; packet->payload = header; header->feed_version = 1; gettimeofday(&header->starttime, NULL); sr_session_send(ctx->session_dev_id, packet); /* Send metadata about the SR_DF_LOGIC packets to come. */ packet->type = SR_DF_META_LOGIC; packet->payload = &meta; meta.samplerate = ctx->cur_samplerate; meta.num_probes = ctx->num_probes; sr_session_send(ctx->session_dev_id, packet); /* Add capture source. */ sr_source_add(0, G_IO_IN, 10, receive_data, sdi); g_free(header); g_free(packet); ctx->state.state = SIGMA_CAPTURE; return SR_OK; } static int hw_dev_acquisition_stop(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; uint8_t modestatus; /* Avoid compiler warnings. */ (void)cb_data; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("sigma: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("sigma: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } /* Stop acquisition. */ sigma_set_register(WRITE_MODE, 0x11, ctx); /* Set SDRAM Read Enable. */ sigma_set_register(WRITE_MODE, 0x02, ctx); /* Get the current position. */ sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx); /* Check if trigger has fired. */ modestatus = sigma_get_register(READ_MODE, ctx); if (modestatus & 0x20) ctx->state.triggerchunk = ctx->state.triggerpos / 512; else ctx->state.triggerchunk = -1; ctx->state.chunks_downloaded = 0; ctx->state.state = SIGMA_DOWNLOAD; return SR_OK; } SR_PRIV struct sr_dev_driver asix_sigma_driver_info = { .name = "asix-sigma", .longname = "ASIX SIGMA/SIGMA2", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };