/* * This file is part of the libsigrok project. * * Copyright (C) 2014 Bert Vermeulen * Copyright (C) 2017,2019 Frank Stettner * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "scpi.h" #include "protocol.h" static struct sr_dev_driver scpi_pps_driver_info; static struct sr_dev_driver hp_ib_pps_driver_info; static const uint32_t scanopts[] = { SR_CONF_CONN, SR_CONF_SERIALCOMM, }; static const uint32_t drvopts[] = { SR_CONF_POWER_SUPPLY, }; static const struct pps_channel_instance pci[] = { { SR_MQ_VOLTAGE, SCPI_CMD_GET_MEAS_VOLTAGE, "V" }, { SR_MQ_CURRENT, SCPI_CMD_GET_MEAS_CURRENT, "I" }, { SR_MQ_POWER, SCPI_CMD_GET_MEAS_POWER, "P" }, { SR_MQ_FREQUENCY, SCPI_CMD_GET_MEAS_FREQUENCY, "F" }, }; static struct sr_dev_inst *probe_device(struct sr_scpi_dev_inst *scpi, int (*get_hw_id)(struct sr_scpi_dev_inst *scpi, struct sr_scpi_hw_info **scpi_response)) { struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_scpi_hw_info *hw_info; struct sr_channel_group *cg; struct sr_channel *ch; const struct scpi_pps *device; struct pps_channel *pch; struct channel_spec *channels; struct channel_group_spec *channel_groups, *cgs; struct pps_channel_group *pcg; GRegex *model_re; GMatchInfo *model_mi; GSList *l; uint64_t mask; unsigned int num_channels, num_channel_groups, ch_num, ch_idx, i, j; int ret; const char *vendor; char ch_name[16]; if (get_hw_id(scpi, &hw_info) != SR_OK) { sr_info("Couldn't get IDN response."); return NULL; } device = NULL; for (i = 0; i < num_pps_profiles; i++) { vendor = sr_vendor_alias(hw_info->manufacturer); if (g_ascii_strcasecmp(vendor, pps_profiles[i].vendor)) continue; model_re = g_regex_new(pps_profiles[i].model, 0, 0, NULL); if (g_regex_match(model_re, hw_info->model, 0, &model_mi)) device = &pps_profiles[i]; g_match_info_unref(model_mi); g_regex_unref(model_re); if (device) break; } if (!device) { sr_scpi_hw_info_free(hw_info); return NULL; } sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->vendor = g_strdup(vendor); sdi->model = g_strdup(hw_info->model); sdi->version = g_strdup(hw_info->firmware_version); sdi->conn = scpi; sdi->driver = &scpi_pps_driver_info; sdi->inst_type = SR_INST_SCPI; sdi->serial_num = g_strdup(hw_info->serial_number); devc = g_malloc0(sizeof(struct dev_context)); devc->device = device; sr_sw_limits_init(&devc->limits); sdi->priv = devc; if (device->num_channels) { /* Static channels and groups. */ channels = (struct channel_spec *)device->channels; num_channels = device->num_channels; channel_groups = (struct channel_group_spec *)device->channel_groups; num_channel_groups = device->num_channel_groups; } else { /* Channels and groups need to be probed. */ ret = device->probe_channels(sdi, hw_info, &channels, &num_channels, &channel_groups, &num_channel_groups); if (ret != SR_OK) { sr_err("Failed to probe for channels."); return NULL; } /* * Since these were dynamically allocated, we'll need to free them * later. */ devc->channels = channels; devc->channel_groups = channel_groups; } ch_idx = 0; for (ch_num = 0; ch_num < num_channels; ch_num++) { /* Create one channel per measurable output unit. */ for (i = 0; i < ARRAY_SIZE(pci); i++) { if (!sr_scpi_cmd_get(devc->device->commands, pci[i].command)) continue; g_snprintf(ch_name, 16, "%s%s", pci[i].prefix, channels[ch_num].name); ch = sr_channel_new(sdi, ch_idx++, SR_CHANNEL_ANALOG, TRUE, ch_name); pch = g_malloc0(sizeof(struct pps_channel)); pch->hw_output_idx = ch_num; pch->hwname = channels[ch_num].name; pch->mq = pci[i].mq; ch->priv = pch; } } for (i = 0; i < num_channel_groups; i++) { cgs = &channel_groups[i]; cg = g_malloc0(sizeof(struct sr_channel_group)); cg->name = g_strdup(cgs->name); for (j = 0, mask = 1; j < 64; j++, mask <<= 1) { if (cgs->channel_index_mask & mask) { for (l = sdi->channels; l; l = l->next) { ch = l->data; pch = ch->priv; /* Add mqflags from channel_group_spec only to voltage * and current channels */ if (pch->mq == SR_MQ_VOLTAGE || pch->mq == SR_MQ_CURRENT) pch->mqflags = cgs->mqflags; else pch->mqflags = 0; if (pch->hw_output_idx == j) cg->channels = g_slist_append(cg->channels, ch); } } } pcg = g_malloc0(sizeof(struct pps_channel_group)); pcg->features = cgs->features; cg->priv = pcg; sdi->channel_groups = g_slist_append(sdi->channel_groups, cg); } sr_scpi_hw_info_free(hw_info); hw_info = NULL; /* Don't send SCPI_CMD_LOCAL for HP 66xxB devices using SCPI over GPIB */ if (!(devc->device->dialect == SCPI_DIALECT_HP_66XXB && scpi->transport == SCPI_TRANSPORT_LIBGPIB)) sr_scpi_cmd(sdi, devc->device->commands, 0, NULL, SCPI_CMD_LOCAL); return sdi; } static gchar *hpib_get_revision(struct sr_scpi_dev_inst *scpi) { int ret; gboolean matches; char *response; GRegex *version_regex; ret = sr_scpi_get_string(scpi, "ROM?", &response); if (ret != SR_OK && !response) return NULL; /* Example version string: "B01 B01" */ version_regex = g_regex_new("[A-Z][0-9]{2} [A-Z][0-9]{2}", 0, 0, NULL); matches = g_regex_match(version_regex, response, 0, NULL); g_regex_unref(version_regex); if (!matches) { /* Not a valid version string. Ignore it. */ g_free(response); response = NULL; } else { /* Replace space with dot. */ response[3] = '.'; } return response; } /* * This function assumes the response is in the form "HP" * * HP made many GPIB (then called HP-IB) instruments before the SCPI command * set was introduced into the standard. We haven't seen any non-HP instruments * which respond to the "ID?" query, so assume all are HP for now. */ static int hpib_get_hw_id(struct sr_scpi_dev_inst *scpi, struct sr_scpi_hw_info **scpi_response) { int ret; char *response; struct sr_scpi_hw_info *hw_info; ret = sr_scpi_get_string(scpi, "ID?", &response); if ((ret != SR_OK) || !response) return SR_ERR; hw_info = g_malloc0(sizeof(struct sr_scpi_hw_info)); *scpi_response = hw_info; hw_info->model = response; hw_info->firmware_version = hpib_get_revision(scpi); hw_info->manufacturer = g_strdup("HP"); return SR_OK; } static struct sr_dev_inst *probe_scpi_pps_device(struct sr_scpi_dev_inst *scpi) { return probe_device(scpi, sr_scpi_get_hw_id); } static struct sr_dev_inst *probe_hpib_pps_device(struct sr_scpi_dev_inst *scpi) { return probe_device(scpi, hpib_get_hw_id); } static GSList *scan_scpi_pps(struct sr_dev_driver *di, GSList *options) { return sr_scpi_scan(di->context, options, probe_scpi_pps_device); } static GSList *scan_hpib_pps(struct sr_dev_driver *di, GSList *options) { return sr_scpi_scan(di->context, options, probe_hpib_pps_device); } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_scpi_dev_inst *scpi; GVariant *beeper; scpi = sdi->conn; if (sr_scpi_open(scpi) < 0) return SR_ERR; devc = sdi->priv; /* Don't send SCPI_CMD_REMOTE for HP 66xxB devices using SCPI over GPIB */ if (!(devc->device->dialect == SCPI_DIALECT_HP_66XXB && scpi->transport == SCPI_TRANSPORT_LIBGPIB)) sr_scpi_cmd(sdi, devc->device->commands, 0, NULL, SCPI_CMD_REMOTE); devc->beeper_was_set = FALSE; if (sr_scpi_cmd_resp(sdi, devc->device->commands, 0, NULL, &beeper, G_VARIANT_TYPE_BOOLEAN, SCPI_CMD_BEEPER) == SR_OK) { if (g_variant_get_boolean(beeper)) { devc->beeper_was_set = TRUE; sr_scpi_cmd(sdi, devc->device->commands, 0, NULL, SCPI_CMD_BEEPER_DISABLE); } g_variant_unref(beeper); } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_scpi_dev_inst *scpi; struct dev_context *devc; devc = sdi->priv; scpi = sdi->conn; if (!scpi) return SR_ERR_BUG; if (devc->beeper_was_set) sr_scpi_cmd(sdi, devc->device->commands, 0, NULL, SCPI_CMD_BEEPER_ENABLE); /* Don't send SCPI_CMD_LOCAL for HP 66xxB devices using SCPI over GPIB */ if (!(devc->device->dialect == SCPI_DIALECT_HP_66XXB && scpi->transport == SCPI_TRANSPORT_LIBGPIB)) sr_scpi_cmd(sdi, devc->device->commands, 0, NULL, SCPI_CMD_LOCAL); return sr_scpi_close(scpi); } static void clear_helper(struct dev_context *devc) { g_free(devc->channels); g_free(devc->channel_groups); } static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper); } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; const GVariantType *gvtype; unsigned int i; int channel_group_cmd; char *channel_group_name; int cmd, ret; const char *s; int reg; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; if (cg) { /* * These options only apply to channel groups with a single * channel -- they're per-channel settings for the device. */ /* * Config keys are handled below depending on whether a channel * group was provided by the frontend. However some of these * take a CG on one PPS but not on others. Check the device's * profile for that here, and NULL out the channel group as needed. */ for (i = 0; i < devc->device->num_devopts; i++) { if (devc->device->devopts[i] == key) { cg = NULL; break; } } } gvtype = NULL; cmd = -1; switch (key) { case SR_CONF_ENABLED: gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OUTPUT_ENABLED; break; case SR_CONF_VOLTAGE: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_MEAS_VOLTAGE; break; case SR_CONF_VOLTAGE_TARGET: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_VOLTAGE_TARGET; break; case SR_CONF_OUTPUT_FREQUENCY: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_MEAS_FREQUENCY; break; case SR_CONF_OUTPUT_FREQUENCY_TARGET: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_FREQUENCY_TARGET; break; case SR_CONF_CURRENT: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_MEAS_CURRENT; break; case SR_CONF_CURRENT_LIMIT: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_CURRENT_LIMIT; break; case SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED: gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED; break; case SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE: if (devc->device->dialect == SCPI_DIALECT_HP_66XXB || devc->device->dialect == SCPI_DIALECT_HP_COMP) gvtype = G_VARIANT_TYPE_STRING; else gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE; break; case SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD; break; case SR_CONF_OVER_CURRENT_PROTECTION_ENABLED: gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED; break; case SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE: if (devc->device->dialect == SCPI_DIALECT_HP_66XXB || devc->device->dialect == SCPI_DIALECT_HP_COMP) gvtype = G_VARIANT_TYPE_STRING; else gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE; break; case SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD: gvtype = G_VARIANT_TYPE_DOUBLE; cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD; break; case SR_CONF_OVER_TEMPERATURE_PROTECTION: gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION; break; case SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE: if (devc->device->dialect == SCPI_DIALECT_HP_66XXB || devc->device->dialect == SCPI_DIALECT_HP_COMP) gvtype = G_VARIANT_TYPE_STRING; else gvtype = G_VARIANT_TYPE_BOOLEAN; cmd = SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION_ACTIVE; break; case SR_CONF_REGULATION: gvtype = G_VARIANT_TYPE_STRING; cmd = SCPI_CMD_GET_OUTPUT_REGULATION; break; default: return sr_sw_limits_config_get(&devc->limits, key, data); } if (!gvtype) return SR_ERR_NA; channel_group_cmd = 0; channel_group_name = NULL; if (cg) { channel_group_cmd = SCPI_CMD_SELECT_CHANNEL; channel_group_name = g_strdup(cg->name); } ret = sr_scpi_cmd_resp(sdi, devc->device->commands, channel_group_cmd, channel_group_name, data, gvtype, cmd); g_free(channel_group_name); /* * Handle special cases */ if (cmd == SCPI_CMD_GET_OUTPUT_REGULATION) { if (devc->device->dialect == SCPI_DIALECT_PHILIPS) { /* * The Philips PM2800 series returns VOLT/CURR. We always return * a GVariant string in the Rigol notation (CV/CC/UR). */ s = g_variant_get_string(*data, NULL); if (!g_strcmp0(s, "VOLT")) { g_variant_unref(*data); *data = g_variant_new_string("CV"); } else if (!g_strcmp0(s, "CURR")) { g_variant_unref(*data); *data = g_variant_new_string("CC"); } } if (devc->device->dialect == SCPI_DIALECT_HP_COMP) { /* Evaluate Status Register from a HP 66xx in COMP mode. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); if (reg & (1 << 0)) *data = g_variant_new_string("CV"); else if (reg & (1 << 1)) *data = g_variant_new_string("CC"); else if (reg & (1 << 2)) *data = g_variant_new_string("UR"); else if (reg & (1 << 9)) *data = g_variant_new_string("CC-"); else *data = g_variant_new_string(""); } if (devc->device->dialect == SCPI_DIALECT_HP_66XXB) { /* Evaluate Operational Status Register from a HP 66xxB. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); if (reg & (1 << 8)) *data = g_variant_new_string("CV"); else if (reg & (1 << 10)) *data = g_variant_new_string("CC"); else if (reg & (1 << 11)) *data = g_variant_new_string("CC-"); else *data = g_variant_new_string("UR"); } s = g_variant_get_string(*data, NULL); if (g_strcmp0(s, "CV") && g_strcmp0(s, "CC") && g_strcmp0(s, "CC-") && g_strcmp0(s, "UR") && g_strcmp0(s, "")) { sr_err("Unknown response to SCPI_CMD_GET_OUTPUT_REGULATION: %s", s); ret = SR_ERR_DATA; } } if (cmd == SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE) { if (devc->device->dialect == SCPI_DIALECT_HP_COMP) { /* Evaluate Status Register from a HP 66xx in COMP mode. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 3)); } if (devc->device->dialect == SCPI_DIALECT_HP_66XXB) { /* Evaluate Questionable Status Register bit 0 from a HP 66xxB. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 0)); } } if (cmd == SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE) { if (devc->device->dialect == SCPI_DIALECT_HP_COMP) { /* Evaluate Status Register from a HP 66xx in COMP mode. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 6)); } if (devc->device->dialect == SCPI_DIALECT_HP_66XXB) { /* Evaluate Questionable Status Register bit 1 from a HP 66xxB. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 1)); } } if (cmd == SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION_ACTIVE) { if (devc->device->dialect == SCPI_DIALECT_HP_COMP) { /* Evaluate Status Register from a HP 66xx in COMP mode. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 4)); } if (devc->device->dialect == SCPI_DIALECT_HP_66XXB) { /* Evaluate Questionable Status Register bit 4 from a HP 66xxB. */ s = g_variant_get_string(*data, NULL); sr_atoi(s, ®); g_variant_unref(*data); *data = g_variant_new_boolean(reg & (1 << 4)); } } return ret; } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; double d; int channel_group_cmd; char *channel_group_name; int ret; if (!sdi) return SR_ERR_ARG; channel_group_cmd = 0; channel_group_name = NULL; if (cg) { channel_group_cmd = SCPI_CMD_SELECT_CHANNEL; channel_group_name = g_strdup(cg->name); } devc = sdi->priv; switch (key) { case SR_CONF_ENABLED: if (g_variant_get_boolean(data)) ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OUTPUT_ENABLE); else ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OUTPUT_DISABLE); break; case SR_CONF_VOLTAGE_TARGET: d = g_variant_get_double(data); ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_VOLTAGE_TARGET, d); break; case SR_CONF_OUTPUT_FREQUENCY_TARGET: d = g_variant_get_double(data); ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_FREQUENCY_TARGET, d); break; case SR_CONF_CURRENT_LIMIT: d = g_variant_get_double(data); ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_CURRENT_LIMIT, d); break; case SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED: if (g_variant_get_boolean(data)) ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE); else ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE); break; case SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD: d = g_variant_get_double(data); ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, d); break; case SR_CONF_OVER_CURRENT_PROTECTION_ENABLED: if (g_variant_get_boolean(data)) ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE); else ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE); break; case SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD: d = g_variant_get_double(data); ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, d); break; case SR_CONF_OVER_TEMPERATURE_PROTECTION: if (g_variant_get_boolean(data)) ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_ENABLE); else ret = sr_scpi_cmd(sdi, devc->device->commands, channel_group_cmd, channel_group_name, SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_DISABLE); break; default: ret = sr_sw_limits_config_set(&devc->limits, key, data); } g_free(channel_group_name); return ret; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; struct sr_channel *ch; const struct channel_spec *ch_spec; int i; const char *s[16]; devc = (sdi) ? sdi->priv : NULL; if (!cg) { switch (key) { case SR_CONF_SCAN_OPTIONS: case SR_CONF_DEVICE_OPTIONS: return std_opts_config_list(key, data, sdi, cg, ARRAY_AND_SIZE(scanopts), ARRAY_AND_SIZE(drvopts), (devc && devc->device) ? devc->device->devopts : NULL, (devc && devc->device) ? devc->device->num_devopts : 0); break; case SR_CONF_CHANNEL_CONFIG: if (!devc || !devc->device) return SR_ERR_ARG; /* Not used. */ i = 0; if (devc->device->features & PPS_INDEPENDENT) s[i++] = "Independent"; if (devc->device->features & PPS_SERIES) s[i++] = "Series"; if (devc->device->features & PPS_PARALLEL) s[i++] = "Parallel"; if (i == 0) { /* * Shouldn't happen: independent-only devices * shouldn't advertise this option at all. */ return SR_ERR_NA; } *data = g_variant_new_strv(s, i); break; default: return SR_ERR_NA; } } else { /* * Per-channel-group options depending on a channel are actually * done with the first channel. Channel groups in PPS can have * more than one channel, but they will typically be of equal * specification for use in series or parallel mode. */ ch = cg->channels->data; if (!devc || !devc->device) return SR_ERR_ARG; ch_spec = &(devc->device->channels[ch->index]); switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = std_gvar_array_u32(devc->device->devopts_cg, devc->device->num_devopts_cg); break; case SR_CONF_VOLTAGE_TARGET: *data = std_gvar_min_max_step_array(ch_spec->voltage); break; case SR_CONF_OUTPUT_FREQUENCY_TARGET: *data = std_gvar_min_max_step_array(ch_spec->frequency); break; case SR_CONF_CURRENT_LIMIT: *data = std_gvar_min_max_step_array(ch_spec->current); break; case SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD: *data = std_gvar_min_max_step_array(ch_spec->ovp); break; case SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD: *data = std_gvar_min_max_step_array(ch_spec->ocp); break; default: return SR_ERR_NA; } } return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_scpi_dev_inst *scpi; int ret; devc = sdi->priv; scpi = sdi->conn; /* Prime the pipe with the first channel. */ devc->cur_acquisition_channel = sr_next_enabled_channel(sdi, NULL); /* Device specific initialization before acquisition starts. */ if (devc->device->init_acquisition) devc->device->init_acquisition(sdi); if ((ret = sr_scpi_source_add(sdi->session, scpi, G_IO_IN, 10, scpi_pps_receive_data, (void *)sdi)) != SR_OK) return ret; std_session_send_df_header(sdi); sr_sw_limits_acquisition_start(&devc->limits); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { struct sr_scpi_dev_inst *scpi; scpi = sdi->conn; sr_scpi_source_remove(sdi->session, scpi); std_session_send_df_end(sdi); return SR_OK; } static struct sr_dev_driver scpi_pps_driver_info = { .name = "scpi-pps", .longname = "SCPI PPS", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan_scpi_pps, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; static struct sr_dev_driver hp_ib_pps_driver_info = { .name = "hpib-pps", .longname = "HP-IB PPS", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan_hpib_pps, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; SR_REGISTER_DEV_DRIVER(scpi_pps_driver_info); SR_REGISTER_DEV_DRIVER(hp_ib_pps_driver_info);