libsigrok/hardware/hameg-hmo/protocol.c

737 lines
17 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
static const char *hameg_scpi_dialect[] = {
[SCPI_CMD_GET_DIG_DATA] = ":POD%d:DATA?",
[SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?",
[SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s",
[SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?",
[SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s",
[SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?",
[SCPI_CMD_GET_SAMPLE_RATE_LIVE] = ":%s:DATA:POINTS?",
[SCPI_CMD_GET_ANALOG_DATA] = ":CHAN%d:DATA?",
[SCPI_CMD_GET_VERTICAL_DIV] = ":CHAN%d:SCAL?",
[SCPI_CMD_SET_VERTICAL_DIV] = ":CHAN%d:SCAL %s",
[SCPI_CMD_GET_DIG_POD_STATE] = ":POD%d:STAT?",
[SCPI_CMD_SET_DIG_POD_STATE] = ":POD%d:STAT %d",
[SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?",
[SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP %s",
[SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?",
[SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s",
[SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?",
[SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d",
[SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?",
[SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?",
[SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %E",
[SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?",
[SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d",
};
static const int32_t hmo_hwcaps[] = {
SR_CONF_OSCILLOSCOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TIMEBASE,
SR_CONF_NUM_TIMEBASE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_FRAMES,
};
static const int32_t hmo_analog_caps[] = {
SR_CONF_NUM_VDIV,
SR_CONF_COUPLING,
SR_CONF_VDIV,
};
static const char *hmo_coupling_options[] = {
"AC",
"ACL",
"DC",
"DCL",
"GND",
NULL,
};
static const char *scope_trigger_slopes[] = {
"POS",
"NEG",
NULL,
};
static const char *hmo_compact2_trigger_sources[] = {
"CH1",
"CH2",
"LINE",
"EXT",
"D0",
"D1",
"D2",
"D3",
"D4",
"D5",
"D6",
"D7",
NULL,
};
static const char *hmo_compact4_trigger_sources[] = {
"CH1",
"CH2",
"CH3",
"CH4",
"LINE",
"EXT",
"D0",
"D1",
"D2",
"D3",
"D4",
"D5",
"D6",
"D7",
NULL,
};
static const uint64_t hmo_timebases[][2] = {
/* nanoseconds */
{ 2, 1000000000 },
{ 5, 1000000000 },
{ 10, 1000000000 },
{ 20, 1000000000 },
{ 50, 1000000000 },
{ 100, 1000000000 },
{ 200, 1000000000 },
{ 500, 1000000000 },
/* microseconds */
{ 1, 1000000 },
{ 2, 1000000 },
{ 5, 1000000 },
{ 10, 1000000 },
{ 20, 1000000 },
{ 50, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 500, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* seconds */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
};
static const uint64_t hmo_vdivs[][2] = {
/* millivolts */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
};
static const char *scope_analog_probe_names[] = {
"CH1",
"CH2",
"CH3",
"CH4",
};
static const char *scope_digital_probe_names[] = {
"D0",
"D1",
"D2",
"D3",
"D4",
"D5",
"D6",
"D7",
"D8",
"D9",
"D10",
"D11",
"D12",
"D13",
"D14",
"D15",
};
static struct scope_config scope_models[] = {
{
.name = {"HMO722", "HMO1022", "HMO1522", "HMO2022", NULL},
.analog_channels = 2,
.digital_channels = 8,
.digital_pods = 1,
.analog_names = &scope_analog_probe_names,
.digital_names = &scope_digital_probe_names,
.hw_caps = &hmo_hwcaps,
.num_hwcaps = ARRAY_SIZE(hmo_hwcaps),
.analog_hwcaps = &hmo_analog_caps,
.num_analog_hwcaps = ARRAY_SIZE(hmo_analog_caps),
.coupling_options = &hmo_coupling_options,
.trigger_sources = &hmo_compact2_trigger_sources,
.trigger_slopes = &scope_trigger_slopes,
.timebases = &hmo_timebases,
.num_timebases = ARRAY_SIZE(hmo_timebases),
.vdivs = &hmo_vdivs,
.num_vdivs = ARRAY_SIZE(hmo_vdivs),
.num_xdivs = 12,
.num_ydivs = 8,
.scpi_dialect = &hameg_scpi_dialect,
},
{
.name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL},
.analog_channels = 4,
.digital_channels = 8,
.digital_pods = 1,
.analog_names = &scope_analog_probe_names,
.digital_names = &scope_digital_probe_names,
.hw_caps = &hmo_hwcaps,
.num_hwcaps = ARRAY_SIZE(hmo_hwcaps),
.analog_hwcaps = &hmo_analog_caps,
.num_analog_hwcaps = ARRAY_SIZE(hmo_analog_caps),
.coupling_options = &hmo_coupling_options,
.trigger_sources = &hmo_compact4_trigger_sources,
.trigger_slopes = &scope_trigger_slopes,
.timebases = &hmo_timebases,
.num_timebases = ARRAY_SIZE(hmo_timebases),
.vdivs = &hmo_vdivs,
.num_vdivs = ARRAY_SIZE(hmo_vdivs),
.num_xdivs = 12,
.num_ydivs = 8,
.scpi_dialect = &hameg_scpi_dialect,
},
};
static void scope_state_dump(struct scope_config *config,
struct scope_state *state)
{
unsigned int i;
char *tmp;
for (i = 0; i < config->analog_channels; ++i) {
tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
(*config->vdivs)[state->analog_channels[i].vdiv][1]);
sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
i + 1, state->analog_channels[i].state ? "On" : "Off",
(*config->coupling_options)[state->analog_channels[i].coupling],
tmp, state->analog_channels[i].vertical_offset);
}
for (i = 0; i < config->digital_channels; ++i) {
sr_info("State of digital channel %d -> %s", i,
state->digital_channels[i] ? "On" : "Off");
}
for (i = 0; i < config->digital_pods; ++i) {
sr_info("State of digital POD %d -> %s", i,
state->digital_pods[i] ? "On" : "Off");
}
tmp = sr_period_string((*config->timebases)[state->timebase][0] *
(*config->timebases)[state->timebase][1]);
sr_info("Current timebase: %s", tmp);
g_free(tmp);
tmp = sr_samplerate_string(state->sample_rate);
sr_info("Current samplerate: %s", tmp);
g_free(tmp);
sr_info("Current trigger: %s (source), %s (slope) %2.2e (offset)",
(*config->trigger_sources)[state->trigger_source],
(*config->trigger_slopes)[state->trigger_slope],
state->horiz_triggerpos);
}
static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
const char *command, const char *(*array)[], int *result)
{
char *tmp;
unsigned int i;
if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK) {
g_free(tmp);
return SR_ERR;
}
for (i = 0; (*array)[i]; ++i) {
if (!g_strcmp0(tmp, (*array)[i])) {
*result = i;
g_free(tmp);
tmp = NULL;
break;
}
}
if (tmp) {
g_free(tmp);
return SR_ERR;
}
return SR_OK;
}
static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
struct scope_config *config,
struct scope_state *state)
{
unsigned int i, j;
float tmp_float;
char command[MAX_COMMAND_SIZE];
for (i = 0; i < config->analog_channels; ++i) {
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE],
i + 1);
if (sr_scpi_get_bool(scpi, command,
&state->analog_channels[i].state) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV],
i + 1);
if (sr_scpi_get_float(scpi, command, &tmp_float) != SR_OK)
return SR_ERR;
for (j = 0; j < config->num_vdivs; j++) {
if (tmp_float == ((float) (*config->vdivs)[j][0] /
(*config->vdivs)[j][1])) {
state->analog_channels[i].vdiv = j;
break;
}
}
if (i == config->num_vdivs)
return SR_ERR;
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET],
i + 1);
if (sr_scpi_get_float(scpi, command,
&state->analog_channels[i].vertical_offset) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_COUPLING],
i + 1);
if (scope_state_get_array_option(scpi, command, config->coupling_options,
&state->analog_channels[i].coupling) != SR_OK)
return SR_ERR;
}
return SR_OK;
}
static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi,
struct scope_config *config,
struct scope_state *state)
{
unsigned int i;
char command[MAX_COMMAND_SIZE];
for (i = 0; i < config->digital_channels; ++i) {
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE],
i);
if (sr_scpi_get_bool(scpi, command,
&state->digital_channels[i]) != SR_OK)
return SR_ERR;
}
for (i = 0; i < config->digital_pods; ++i) {
g_snprintf(command, sizeof(command),
(*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE],
i + 1);
if (sr_scpi_get_bool(scpi, command,
&state->digital_pods[i]) != SR_OK)
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state;
struct scope_config *config;
int tmp;
unsigned int i;
float tmp_float;
gboolean channel_found;
char tmp_str[MAX_COMMAND_SIZE];
char chan_name[20];
devc = sdi->priv;
config = devc->model_config;
state = devc->model_state;
channel_found = FALSE;
for (i = 0; i < config->analog_channels; ++i) {
if (state->analog_channels[i].state) {
g_snprintf(chan_name, sizeof(chan_name), "CHAN%d", i + 1);
g_snprintf(tmp_str, sizeof(tmp_str),
(*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
chan_name);
channel_found = TRUE;
break;
}
}
if (!channel_found) {
for (i = 0; i < config->digital_pods; i++) {
if (state->digital_pods[i]) {
g_snprintf(chan_name, sizeof(chan_name), "POD%d", i);
g_snprintf(tmp_str, sizeof(tmp_str),
(*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
chan_name);
channel_found = TRUE;
break;
}
}
}
/* No channel is active, ask the instrument for the sample rate
* in single shot mode */
if (!channel_found) {
if (sr_scpi_get_float(sdi->conn,
(*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE],
&tmp_float) != SR_OK)
return SR_ERR;
state->sample_rate = tmp_float;
} else {
if (sr_scpi_get_int(sdi->conn, tmp_str, &tmp) != SR_OK)
return SR_ERR;
state->sample_rate = tmp / (((float) (*config->timebases)[state->timebase][0] /
(*config->timebases)[state->timebase][1]) *
config->num_xdivs);
}
return SR_OK;
}
SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state;
struct scope_config *config;
float tmp_float;
unsigned int i;
devc = sdi->priv;
config = devc->model_config;
state = devc->model_state;
sr_info("Fetching scope state");
if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
return SR_ERR;
if (digital_channel_state_get(sdi->conn, config, state) != SR_OK)
return SR_ERR;
if (sr_scpi_get_float(sdi->conn,
(*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
&tmp_float) != SR_OK)
return SR_ERR;
for (i = 0; i < config->num_timebases; i++) {
if (tmp_float == ((float) (*config->timebases)[i][0] /
(*config->timebases)[i][1])) {
state->timebase = i;
break;
}
}
if (i == config->num_timebases)
return SR_ERR;
if (sr_scpi_get_float(sdi->conn,
(*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS],
&state->horiz_triggerpos) != SR_OK)
return SR_ERR;
if (scope_state_get_array_option(sdi->conn,
(*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE],
config->trigger_sources, &state->trigger_source) != SR_OK)
return SR_ERR;
if (scope_state_get_array_option(sdi->conn,
(*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE],
config->trigger_slopes, &state->trigger_slope) != SR_OK)
return SR_ERR;
if (hmo_update_sample_rate(sdi) != SR_OK)
return SR_ERR;
sr_info("Fetching finished.");
scope_state_dump(config, state);
return SR_OK;
}
static struct scope_state *scope_state_new(struct scope_config *config)
{
struct scope_state *state;
if (!(state = g_try_malloc0(sizeof(struct scope_state))))
return NULL;
if (!(state->analog_channels = g_try_malloc0_n(config->analog_channels,
sizeof(struct analog_channel_state))))
goto fail;
if (!(state->digital_channels = g_try_malloc0_n(
config->digital_channels, sizeof(gboolean))))
goto fail;
if (!(state->digital_pods = g_try_malloc0_n(config->digital_pods,
sizeof(gboolean))))
goto fail;
return state;
fail:
if (state->analog_channels)
g_free(state->analog_channels);
if (state->digital_channels)
g_free(state->digital_channels);
if (state->digital_pods)
g_free(state->digital_pods);
g_free(state);
return NULL;
}
SR_PRIV void hmo_scope_state_free(struct scope_state *state)
{
g_free(state->analog_channels);
g_free(state->digital_channels);
g_free(state->digital_pods);
g_free(state);
}
SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi)
{
char tmp[25];
int model_index;
unsigned int i, j;
struct sr_probe *probe;
struct dev_context *devc;
devc = sdi->priv;
model_index = -1;
/* Find the exact model. */
for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
for (j = 0; scope_models[i].name[j]; j++) {
if (!strcmp(sdi->model, scope_models[i].name[j])) {
model_index = i;
break;
}
}
if (model_index != -1)
break;
}
if (model_index == -1) {
sr_dbg("Unsupported HMO device.");
return SR_ERR_NA;
}
if (!(devc->analog_groups = g_try_malloc0(sizeof(struct sr_probe_group) *
scope_models[model_index].analog_channels)))
return SR_ERR_MALLOC;
if (!(devc->digital_groups = g_try_malloc0(sizeof(struct sr_probe_group) *
scope_models[model_index].digital_pods)))
return SR_ERR_MALLOC;
/* Add analog channels. */
for (i = 0; i < scope_models[model_index].analog_channels; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE,
(*scope_models[model_index].analog_names)[i])))
return SR_ERR_MALLOC;
sdi->probes = g_slist_append(sdi->probes, probe);
devc->analog_groups[i].name =
(char *)(*scope_models[model_index].analog_names)[i];
devc->analog_groups[i].probes = g_slist_append(NULL, probe);
sdi->probe_groups = g_slist_append(sdi->probe_groups,
&devc->analog_groups[i]);
}
/* Add digital probe groups. */
for (i = 0; i < scope_models[model_index].digital_pods; ++i) {
g_snprintf(tmp, 25, "POD%d", i);
devc->digital_groups[i].name = g_strdup(tmp);
sdi->probe_groups = g_slist_append(sdi->probe_groups,
&devc->digital_groups[i < 8 ? 0 : 1]);
}
/* Add digital channels. */
for (i = 0; i < scope_models[model_index].digital_channels; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
(*scope_models[model_index].digital_names)[i])))
return SR_ERR_MALLOC;
sdi->probes = g_slist_append(sdi->probes, probe);
devc->digital_groups[i < 8 ? 0 : 1].probes = g_slist_append(
devc->digital_groups[i < 8 ? 0 : 1].probes, probe);
}
devc->model_config = &scope_models[model_index];
devc->frame_limit = 0;
if (!(devc->model_state = scope_state_new(devc->model_config)))
return SR_ERR_MALLOC;
return SR_OK;
}
SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data)
{
struct sr_probe *probe;
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_datafeed_packet packet;
GArray *data;
struct sr_datafeed_analog analog;
struct sr_datafeed_logic logic;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
if (revents == G_IO_IN) {
probe = devc->current_probe->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
if (sr_scpi_get_floatv(sdi->conn, NULL, &data) != SR_OK) {
if (data)
g_array_free(data, TRUE);
return TRUE;
}
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
analog.probes = g_slist_append(NULL, probe);
analog.num_samples = data->len;
analog.data = (float *) data->data;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = 0;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(cb_data, &packet);
g_slist_free(analog.probes);
g_array_free(data, TRUE);
break;
case SR_PROBE_LOGIC:
if (sr_scpi_get_uint8v(sdi->conn, NULL, &data) != SR_OK) {
if (data)
g_free(data);
return TRUE;
}
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
logic.length = data->len;
logic.unitsize = 1;
logic.data = data->data;
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
sr_session_send(cb_data, &packet);
g_array_free(data, TRUE);
break;
default:
sr_err("Invalid probe type.");
break;
}
packet.type = SR_DF_FRAME_END;
sr_session_send(sdi, &packet);
if (devc->current_probe->next) {
devc->current_probe = devc->current_probe->next;
hmo_request_data(sdi);
} else if (++devc->num_frames == devc->frame_limit) {
sdi->driver->dev_acquisition_stop(sdi, cb_data);
} else {
devc->current_probe = devc->enabled_probes;
hmo_request_data(sdi);
}
}
return TRUE;
}