439 lines
12 KiB
C
439 lines
12 KiB
C
/*
|
|
* This file is part of the sigrok project.
|
|
*
|
|
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <glib.h>
|
|
#include "libsigrok.h"
|
|
#include "libsigrok-internal.h"
|
|
|
|
static GSList *devs = NULL;
|
|
|
|
/**
|
|
* Scan the system for attached logic analyzers / devices.
|
|
*
|
|
* This will try to autodetect all supported logic analyzer devices:
|
|
*
|
|
* - Those attached via USB (can be reliably detected via USB VID/PID).
|
|
*
|
|
* - Those using a (real or virtual) serial port (detected by sending
|
|
* device-specific commands to all OS-specific serial port devices such
|
|
* as /dev/ttyS*, /dev/ttyUSB*, /dev/ttyACM*, and others).
|
|
* The autodetection for this kind of devices can potentially be unreliable.
|
|
*
|
|
* Also, sending various bytes/commands to (all!) devices which happen to
|
|
* be attached to the system via a (real or virtual) serial port can be
|
|
* problematic. There is no way for libsigrok to know how unknown devices
|
|
* react to the bytes libsigrok sends. Potentially they could lead to the
|
|
* device getting into invalid/error states, losing/overwriting data, or...
|
|
*
|
|
* In addition to the detection, the devices that are found are also
|
|
* initialized automatically. On some devices, this involves a firmware upload,
|
|
* or other such measures.
|
|
*
|
|
* The order in which the system is scanned for devices is not specified. The
|
|
* caller should not assume or rely on any specific order.
|
|
*
|
|
* After the system has been scanned for devices, the list of detected (and
|
|
* supported) devices can be acquired via sr_dev_list().
|
|
*
|
|
* TODO: Error checks?
|
|
* TODO: Option to only scan for specific devices or device classes.
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_BUG upon internal errors.
|
|
*/
|
|
SR_API int sr_dev_scan(void)
|
|
{
|
|
int i;
|
|
struct sr_dev_driver **drivers;
|
|
|
|
drivers = sr_driver_list();
|
|
if (!drivers[0]) {
|
|
sr_err("dev: %s: no supported hardware drivers", __func__);
|
|
return SR_ERR_BUG;
|
|
}
|
|
|
|
/*
|
|
* Initialize all drivers first. Since the init() call may involve
|
|
* a firmware upload and associated delay, we may as well get all
|
|
* of these out of the way first.
|
|
*/
|
|
for (i = 0; drivers[i]; i++)
|
|
sr_driver_init(drivers[i]);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/**
|
|
* Return the list of logic analyzer devices libsigrok has detected.
|
|
*
|
|
* If the libsigrok-internal device list is empty, a scan for attached
|
|
* devices -- via a call to sr_dev_scan() -- is performed first.
|
|
*
|
|
* TODO: Error handling?
|
|
*
|
|
* @return The list (GSList) of detected devices, or NULL if none were found.
|
|
*/
|
|
SR_API GSList *sr_dev_list(void)
|
|
{
|
|
if (!devs)
|
|
sr_dev_scan();
|
|
|
|
return devs;
|
|
}
|
|
|
|
/**
|
|
* Create a new device.
|
|
*
|
|
* The device is added to the (libsigrok-internal) list of devices, but
|
|
* additionally a pointer to the newly created device is also returned.
|
|
*
|
|
* The device has no probes attached to it yet after this call. You can
|
|
* use sr_dev_probe_add() to add one or more probes.
|
|
*
|
|
* TODO: Should return int, so that we can return SR_OK, SR_ERR_* etc.
|
|
*
|
|
* It is the caller's responsibility to g_free() the allocated memory when
|
|
* no longer needed. TODO: Using which API function?
|
|
*
|
|
* @param driver TODO.
|
|
* If 'driver' is NULL, the created device is a "virtual" one.
|
|
* @param driver_index TODO
|
|
*
|
|
* @return Pointer to the newly allocated device, or NULL upon errors.
|
|
*/
|
|
SR_API struct sr_dev *sr_dev_new(const struct sr_dev_driver *driver,
|
|
int driver_index)
|
|
{
|
|
struct sr_dev *dev;
|
|
|
|
/* TODO: Check if driver_index valid? */
|
|
|
|
if (!(dev = g_try_malloc0(sizeof(struct sr_dev)))) {
|
|
sr_err("dev: %s: dev malloc failed", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
dev->driver = (struct sr_dev_driver *)driver;
|
|
dev->driver_index = driver_index;
|
|
devs = g_slist_append(devs, dev);
|
|
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* Add a probe with the specified name to the specified device.
|
|
*
|
|
* The added probe is automatically enabled (the 'enabled' field is TRUE).
|
|
*
|
|
* The 'trigger' field of the added probe is set to NULL. A trigger can be
|
|
* added via sr_dev_trigger_set().
|
|
*
|
|
* TODO: Are duplicate names allowed?
|
|
* TODO: Do we enforce a maximum probe number for a device?
|
|
* TODO: Error if the max. probe number for the specific LA is reached, e.g.
|
|
* if the caller tries to add more probes than the device actually has.
|
|
*
|
|
* @param dev The device to which to add a probe with the specified name.
|
|
* Must not be NULL.
|
|
* @param name The name of the probe to add to this device. Must not be NULL.
|
|
* TODO: Maximum length, allowed characters, etc.
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_MALLOC upon memory allocation errors,
|
|
* or SR_ERR_ARG upon invalid arguments.
|
|
* If something other than SR_OK is returned, 'dev' is unchanged.
|
|
*/
|
|
SR_API int sr_dev_probe_add(struct sr_dev *dev, const char *name)
|
|
{
|
|
struct sr_probe *p;
|
|
int probenum;
|
|
|
|
if (!dev) {
|
|
sr_err("dev: %s: dev was NULL", __func__);
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
if (!name) {
|
|
sr_err("dev: %s: name was NULL", __func__);
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
/* TODO: Further checks to ensure name is valid. */
|
|
|
|
probenum = g_slist_length(dev->probes) + 1;
|
|
|
|
if (!(p = g_try_malloc0(sizeof(struct sr_probe)))) {
|
|
sr_err("dev: %s: p malloc failed", __func__);
|
|
return SR_ERR_MALLOC;
|
|
}
|
|
|
|
p->index = probenum;
|
|
p->enabled = TRUE;
|
|
p->name = g_strdup(name);
|
|
p->trigger = NULL;
|
|
dev->probes = g_slist_append(dev->probes, p);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/**
|
|
* Find the probe with the specified number in the specified device.
|
|
*
|
|
* TODO
|
|
*
|
|
* @param dev TODO. Must not be NULL.
|
|
* @param probenum The number of the probe whose 'struct sr_probe' we want.
|
|
* Note that the probe numbers start at 1 (not 0!).
|
|
*
|
|
* TODO: Should return int.
|
|
* TODO: probenum should be unsigned.
|
|
*
|
|
* @return A pointer to the requested probe's 'struct sr_probe', or NULL
|
|
* if the probe could not be found.
|
|
*/
|
|
SR_API struct sr_probe *sr_dev_probe_find(const struct sr_dev *dev,
|
|
int probenum)
|
|
{
|
|
GSList *l;
|
|
struct sr_probe *p, *found_probe;
|
|
|
|
if (!dev) {
|
|
sr_err("dev: %s: dev was NULL", __func__);
|
|
return NULL; /* TODO: SR_ERR_ARG */
|
|
}
|
|
|
|
/* TODO: Sanity check on probenum. */
|
|
|
|
found_probe = NULL;
|
|
for (l = dev->probes; l; l = l->next) {
|
|
p = l->data;
|
|
/* TODO: Check for p != NULL. */
|
|
if (p->index == probenum) {
|
|
found_probe = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found_probe;
|
|
}
|
|
|
|
/**
|
|
* Set the name of the specified probe in the specified device.
|
|
*
|
|
* If the probe already has a different name assigned to it, it will be
|
|
* removed, and the new name will be saved instead.
|
|
*
|
|
* @param dev TODO
|
|
* @param probenum The number of the probe whose name to set.
|
|
* Note that the probe numbers start at 1 (not 0!).
|
|
* @param name The new name that the specified probe should get.
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments, or SR_ERR
|
|
* upon other errors.
|
|
* If something other than SR_OK is returned, 'dev' is unchanged.
|
|
*/
|
|
SR_API int sr_dev_probe_name_set(struct sr_dev *dev, int probenum,
|
|
const char *name)
|
|
{
|
|
struct sr_probe *p;
|
|
|
|
if (!dev) {
|
|
sr_err("dev: %s: dev was NULL", __func__);
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
p = sr_dev_probe_find(dev, probenum);
|
|
if (!p) {
|
|
sr_err("dev: %s: probe %d not found", __func__, probenum);
|
|
return SR_ERR; /* TODO: More specific error? */
|
|
}
|
|
|
|
/* TODO: Sanity check on 'name'. */
|
|
|
|
/* If the probe already has a name, kill it first. */
|
|
g_free(p->name);
|
|
|
|
p->name = g_strdup(name);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/**
|
|
* Remove all triggers set up for the specified device.
|
|
*
|
|
* TODO: Better description.
|
|
*
|
|
* @param dev TODO
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments.
|
|
* If something other than SR_OK is returned, 'dev' is unchanged.
|
|
*/
|
|
SR_API int sr_dev_trigger_remove_all(struct sr_dev *dev)
|
|
{
|
|
struct sr_probe *p;
|
|
unsigned int pnum; /* TODO: uint16_t? */
|
|
|
|
if (!dev) {
|
|
sr_err("dev: %s: dev was NULL", __func__);
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
if (!dev->probes) {
|
|
sr_err("dev: %s: dev->probes was NULL", __func__);
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
for (pnum = 1; pnum <= g_slist_length(dev->probes); pnum++) {
|
|
p = sr_dev_probe_find(dev, pnum);
|
|
/* TODO: Silently ignore probes which cannot be found? */
|
|
if (p) {
|
|
g_free(p->trigger);
|
|
p->trigger = NULL;
|
|
}
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/**
|
|
* Add a trigger to the specified device (and the specified probe).
|
|
*
|
|
* If the specified probe of this device already has a trigger, it will
|
|
* be silently replaced.
|
|
*
|
|
* TODO: Better description.
|
|
* TODO: Describe valid format of the 'trigger' string.
|
|
*
|
|
* @param dev TODO. Must not be NULL.
|
|
* @param probenum The number of the probe. TODO.
|
|
* Note that the probe numbers start at 1 (not 0!).
|
|
* @param trigger TODO.
|
|
* TODO: Is NULL allowed?
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments, or SR_ERR
|
|
* upon other errors.
|
|
* If something other than SR_OK is returned, 'dev' is unchanged.
|
|
*/
|
|
SR_API int sr_dev_trigger_set(const struct sr_dev_inst *sdi, int probenum,
|
|
const char *trigger)
|
|
{
|
|
GSList *l;
|
|
struct sr_probe *probe;
|
|
int ret;
|
|
|
|
if (!sdi)
|
|
return SR_ERR_ARG;
|
|
|
|
ret = SR_ERR_ARG;
|
|
for (l = sdi->probes; l; l = l->next) {
|
|
probe = l->data;
|
|
if (probe->index == probenum) {
|
|
/* If the probe already has a trigger, kill it first. */
|
|
g_free(probe->trigger);
|
|
probe->trigger = g_strdup(trigger);
|
|
ret = SR_OK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Determine whether the specified device has the specified capability.
|
|
*
|
|
* @param dev Pointer to the device to be checked. Must not be NULL.
|
|
* If the device's 'driver' field is NULL (virtual device), this
|
|
* function will always return FALSE (virtual devices don't have
|
|
* a hardware capabilities list).
|
|
* @param hwcap The capability that should be checked (whether it's supported
|
|
* by the specified device).
|
|
*
|
|
* @return TRUE, if the device has the specified capability, FALSE otherwise.
|
|
* FALSE is also returned upon invalid input parameters or other
|
|
* error conditions.
|
|
*/
|
|
SR_API gboolean sr_dev_has_hwcap(const struct sr_dev *dev, int hwcap)
|
|
{
|
|
const int *hwcaps;
|
|
int i;
|
|
|
|
sr_spew("dev: %s: requesting hwcap %d", __func__, hwcap);
|
|
|
|
if (!dev) {
|
|
sr_err("dev: %s: dev was NULL", __func__);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Virtual devices (which have dev->driver set to NULL) always say that
|
|
* they don't have the capability (they can't call hwcap_get_all()).
|
|
*/
|
|
if (!dev->driver) {
|
|
sr_dbg("dev: %s: dev->driver was NULL, this seems to be "
|
|
"a virtual device without capabilities", __func__);
|
|
return FALSE;
|
|
}
|
|
|
|
/* TODO: Sanity check on 'hwcap'. */
|
|
|
|
if (dev->driver->info_get(SR_DI_HWCAPS,
|
|
(const void **)&hwcaps, NULL) != SR_OK) {
|
|
sr_err("dev: %s: dev has no capabilities", __func__);
|
|
return FALSE;
|
|
}
|
|
|
|
for (i = 0; hwcaps[i]; i++) {
|
|
if (hwcaps[i] != hwcap)
|
|
continue;
|
|
sr_spew("dev: %s: found hwcap %d", __func__, hwcap);
|
|
return TRUE;
|
|
}
|
|
|
|
sr_spew("dev: %s: hwcap %d not found", __func__, hwcap);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
* Returns information about the given device.
|
|
*
|
|
* @param dev Pointer to the device to be checked. Must not be NULL.
|
|
* The device's 'driver' field must not be NULL either.
|
|
* @param id The type of information.
|
|
* @param data The return value. Must not be NULL.
|
|
*
|
|
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments, or SR_ERR
|
|
* upon other errors.
|
|
*/
|
|
SR_API int sr_dev_info_get(const struct sr_dev *dev, int id, const void **data)
|
|
{
|
|
if ((dev == NULL) || (dev->driver == NULL))
|
|
return SR_ERR_ARG;
|
|
|
|
if (data == NULL)
|
|
return SR_ERR_ARG;
|
|
|
|
*data = dev->driver->dev_info_get(dev->driver_index, id);
|
|
|
|
if (*data == NULL)
|
|
return SR_ERR;
|
|
|
|
return SR_OK;
|
|
}
|