libsigrok/src/hardware/fx2lafw/api.c

1059 lines
28 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "protocol.h"
#include "dslogic.h"
#include <math.h>
static const struct fx2lafw_profile supported_fx2[] = {
/*
* CWAV USBee AX
* EE Electronics ESLA201A
* ARMFLY AX-Pro
*/
{ 0x08a9, 0x0014, "CWAV", "USBee AX", NULL,
"fx2lafw-cwav-usbeeax.fw",
DEV_CAPS_AX_ANALOG, NULL, NULL},
/*
* CWAV USBee DX
* XZL-Studio DX
*/
{ 0x08a9, 0x0015, "CWAV", "USBee DX", NULL,
"fx2lafw-cwav-usbeedx.fw",
DEV_CAPS_16BIT, NULL, NULL },
/*
* CWAV USBee SX
*/
{ 0x08a9, 0x0009, "CWAV", "USBee SX", NULL,
"fx2lafw-cwav-usbeesx.fw",
0, NULL, NULL},
/* DreamSourceLab DSLogic (before FW upload) */
{ 0x2a0e, 0x0001, "DreamSourceLab", "DSLogic", NULL,
"dreamsourcelab-dslogic-fx2.fw",
DEV_CAPS_16BIT, NULL, NULL},
/* DreamSourceLab DSLogic (after FW upload) */
{ 0x2a0e, 0x0001, "DreamSourceLab", "DSLogic", NULL,
"dreamsourcelab-dslogic-fx2.fw",
DEV_CAPS_16BIT, "DreamSourceLab", "DSLogic"},
/* DreamSourceLab DSCope (before FW upload) */
{ 0x2a0e, 0x0002, "DreamSourceLab", "DSCope", NULL,
"dreamsourcelab-dscope-fx2.fw",
DEV_CAPS_16BIT, NULL, NULL},
/* DreamSourceLab DSCope (after FW upload) */
{ 0x2a0e, 0x0002, "DreamSourceLab", "DSCope", NULL,
"dreamsourcelab-dscope-fx2.fw",
DEV_CAPS_16BIT, "DreamSourceLab", "DSCope"},
/* DreamSourceLab DSLogic Pro (before FW upload) */
{ 0x2a0e, 0x0003, "DreamSourceLab", "DSLogic Pro", NULL,
"dreamsourcelab-dslogic-pro-fx2.fw",
DEV_CAPS_16BIT, NULL, NULL},
/* DreamSourceLab DSLogic Pro (after FW upload) */
{ 0x2a0e, 0x0003, "DreamSourceLab", "DSLogic Pro", NULL,
"dreamsourcelab-dslogic-pro-fx2.fw",
DEV_CAPS_16BIT, "DreamSourceLab", "DSLogic"},
/*
* Saleae Logic
* EE Electronics ESLA100
* Robomotic MiniLogic
* Robomotic BugLogic 3
*/
{ 0x0925, 0x3881, "Saleae", "Logic", NULL,
"fx2lafw-saleae-logic.fw",
0, NULL, NULL},
/*
* Default Cypress FX2 without EEPROM, e.g.:
* Lcsoft Mini Board
* Braintechnology USB Interface V2.x
*/
{ 0x04B4, 0x8613, "Cypress", "FX2", NULL,
"fx2lafw-cypress-fx2.fw",
DEV_CAPS_16BIT, NULL, NULL },
/*
* Braintechnology USB-LPS
*/
{ 0x16d0, 0x0498, "Braintechnology", "USB-LPS", NULL,
"fx2lafw-braintechnology-usb-lps.fw",
DEV_CAPS_16BIT, NULL, NULL },
/*
* sigrok FX2 based 8-channel logic analyzer
*/
{ 0x1d50, 0x608c, "sigrok", "FX2 LA (8ch)", NULL,
"fx2lafw-sigrok-fx2-8ch.fw",
0, NULL, NULL},
/*
* sigrok FX2 based 16-channel logic analyzer
*/
{ 0x1d50, 0x608d, "sigrok", "FX2 LA (16ch)", NULL,
"fx2lafw-sigrok-fx2-16ch.fw",
DEV_CAPS_16BIT, NULL, NULL },
ALL_ZERO
};
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t dslogic_devopts[] = {
SR_CONF_CONTINUOUS | SR_CONF_SET | SR_CONF_GET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST
};
static const int32_t soft_trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
SR_TRIGGER_EDGE,
};
/* Names assigned to available edge slope choices.
*/
static const char *const signal_edge_names[] = {
[DS_EDGE_RISING] = "rising",
[DS_EDGE_FALLING] = "falling",
};
static const struct {
int range;
gdouble low;
gdouble high;
} volt_thresholds[] = {
{ DS_VOLTAGE_RANGE_18_33_V, 0.7, 1.4 },
{ DS_VOLTAGE_RANGE_5_V, 1.4, 3.6 },
};
static const uint64_t samplerates[] = {
SR_KHZ(20),
SR_KHZ(25),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(250),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(3),
SR_MHZ(4),
SR_MHZ(6),
SR_MHZ(8),
SR_MHZ(12),
SR_MHZ(16),
SR_MHZ(24),
};
static const uint64_t dslogic_samplerates[] = {
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
SR_MHZ(400),
};
SR_PRIV struct sr_dev_driver fx2lafw_driver_info;
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_channel *ch;
struct sr_channel_group *cg;
struct sr_config *src;
const struct fx2lafw_profile *prof;
GSList *l, *devices, *conn_devices;
gboolean has_firmware;
struct libusb_device_descriptor des;
libusb_device **devlist;
struct libusb_device_handle *hdl;
int ret, i, j;
int num_logic_channels = 0, num_analog_channels = 0;
const char *conn;
char manufacturer[64], product[64], serial_num[64], connection_id[64];
char channel_name[16];
drvc = di->context;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all fx2lafw compatible devices and upload firmware to them. */
devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor( devlist[i], &des);
if ((ret = libusb_open(devlist[i], &hdl)) < 0)
continue;
if (des.iManufacturer == 0) {
manufacturer[0] = '\0';
} else if ((ret = libusb_get_string_descriptor_ascii(hdl,
des.iManufacturer, (unsigned char *) manufacturer,
sizeof(manufacturer))) < 0) {
sr_warn("Failed to get manufacturer string descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (des.iProduct == 0) {
product[0] = '\0';
} else if ((ret = libusb_get_string_descriptor_ascii(hdl,
des.iProduct, (unsigned char *) product,
sizeof(product))) < 0) {
sr_warn("Failed to get product string descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (des.iSerialNumber == 0) {
serial_num[0] = '\0';
} else if ((ret = libusb_get_string_descriptor_ascii(hdl,
des.iSerialNumber, (unsigned char *) serial_num,
sizeof(serial_num))) < 0) {
sr_warn("Failed to get serial number string descriptor: %s.",
libusb_error_name(ret));
continue;
}
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
libusb_close(hdl);
prof = NULL;
for (j = 0; supported_fx2[j].vid; j++) {
if (des.idVendor == supported_fx2[j].vid &&
des.idProduct == supported_fx2[j].pid &&
(!supported_fx2[j].usb_manufacturer ||
!strcmp(manufacturer, supported_fx2[j].usb_manufacturer)) &&
(!supported_fx2[j].usb_manufacturer ||
!strcmp(product, supported_fx2[j].usb_product))) {
prof = &supported_fx2[j];
break;
}
}
/* Skip if the device was not found. */
if (!prof)
continue;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup(prof->vendor);
sdi->model = g_strdup(prof->model);
sdi->version = g_strdup(prof->model_version);
sdi->driver = di;
sdi->serial_num = g_strdup(serial_num);
sdi->connection_id = g_strdup(connection_id);
/* Fill in channellist according to this device's profile. */
num_logic_channels = prof->dev_caps & DEV_CAPS_16BIT ? 16 : 8;
num_analog_channels = prof->dev_caps & DEV_CAPS_AX_ANALOG ? 1 : 0;
/* Logic channels, all in one channel group. */
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup("Logic");
for (j = 0; j < num_logic_channels; j++) {
sprintf(channel_name, "D%d", j);
ch = sr_channel_new(sdi, j, SR_CHANNEL_LOGIC,
TRUE, channel_name);
cg->channels = g_slist_append(cg->channels, ch);
}
sdi->channel_groups = g_slist_append(NULL, cg);
for (j = 0; j < num_analog_channels; j++) {
snprintf(channel_name, 16, "A%d", j);
ch = sr_channel_new(sdi, j + num_logic_channels,
SR_CHANNEL_ANALOG, TRUE, channel_name);
/* Every analog channel gets its own channel group. */
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup(channel_name);
cg->channels = g_slist_append(NULL, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
}
devc = fx2lafw_dev_new();
devc->profile = prof;
if ((prof->dev_caps & DEV_CAPS_16BIT) || (prof->dev_caps & DEV_CAPS_AX_ANALOG))
devc->sample_wide = TRUE;
sdi->priv = devc;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
if (!strcmp(prof->model, "DSLogic")
|| !strcmp(prof->model, "DSLogic Pro")
|| !strcmp(prof->model, "DSCope")) {
devc->dslogic = TRUE;
devc->samplerates = dslogic_samplerates;
devc->num_samplerates = ARRAY_SIZE(dslogic_samplerates);
has_firmware = match_manuf_prod(devlist[i], "DreamSourceLab", "DSLogic")
|| match_manuf_prod(devlist[i], "DreamSourceLab", "DSCope");
} else {
devc->dslogic = FALSE;
devc->samplerates = samplerates;
devc->num_samplerates = ARRAY_SIZE(samplerates);
has_firmware = match_manuf_prod(devlist[i],
"sigrok", "fx2lafw");
}
if (has_firmware) {
/* Already has the firmware, so fix the new address. */
sr_dbg("Found an fx2lafw device.");
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
} else {
if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
USB_CONFIGURATION, prof->firmware) == SR_OK)
/* Store when this device's FW was updated. */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.%d (logical).",
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]));
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
0xff, NULL);
}
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return devices;
}
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
g_slist_free(devc->enabled_analog_channels);
g_free(devc);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, clear_dev_context);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct sr_dev_driver *di = sdi->driver;
struct sr_usb_dev_inst *usb;
struct dev_context *devc;
const char *fpga_firmware = NULL;
int ret;
int64_t timediff_us, timediff_ms;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* milliseconds for the FX2 to renumerate.
*/
ret = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((ret = fx2lafw_dev_open(sdi, di)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 "ms.", timediff_ms);
}
if (ret != SR_OK) {
sr_err("Device failed to renumerate.");
return SR_ERR;
}
sr_info("Device came back after %" PRIi64 "ms.", timediff_ms);
} else {
sr_info("Firmware upload was not needed.");
ret = fx2lafw_dev_open(sdi, di);
}
if (ret != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != 0) {
switch (ret) {
case LIBUSB_ERROR_BUSY:
sr_err("Unable to claim USB interface. Another "
"program or driver has already claimed it.");
break;
case LIBUSB_ERROR_NO_DEVICE:
sr_err("Device has been disconnected.");
break;
default:
sr_err("Unable to claim interface: %s.",
libusb_error_name(ret));
break;
}
return SR_ERR;
}
if (devc->dslogic) {
if (!strcmp(devc->profile->model, "DSLogic")) {
if (devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_18_33_V)
fpga_firmware = DSLOGIC_FPGA_FIRMWARE_3V3;
else
fpga_firmware = DSLOGIC_FPGA_FIRMWARE_5V;
} else if (!strcmp(devc->profile->model, "DSLogic Pro")){
fpga_firmware = DSLOGIC_PRO_FPGA_FIRMWARE;
} else if (!strcmp(devc->profile->model, "DSCope")) {
fpga_firmware = DSCOPE_FPGA_FIRMWARE;
}
if ((ret = dslogic_fpga_firmware_upload(sdi, fpga_firmware)) != SR_OK)
return ret;
}
if (devc->cur_samplerate == 0) {
/* Samplerate hasn't been set; default to the slowest one. */
devc->cur_samplerate = devc->samplerates[0];
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
if (!usb->devhdl)
return SR_ERR;
sr_info("fx2lafw: Closing device on %d.%d (logical) / %s (physical) interface %d.",
usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
GVariant *range[2];
unsigned int i;
char str[128];
(void)cg;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
switch (key) {
case SR_CONF_CONN:
if (!sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_VOLTAGE_THRESHOLD:
for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) {
if (volt_thresholds[i].range != devc->dslogic_voltage_threshold)
continue;
range[0] = g_variant_new_double(volt_thresholds[i].low);
range[1] = g_variant_new_double(volt_thresholds[i].high);
*data = g_variant_new_tuple(range, 2);
break;
}
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->dslogic_external_clock);
break;
case SR_CONF_CONTINUOUS:
*data = g_variant_new_boolean(devc->dslogic_continuous_mode);
break;
case SR_CONF_CLOCK_EDGE:
i = devc->dslogic_clock_edge;
if (i >= ARRAY_SIZE(signal_edge_names))
return SR_ERR_BUG;
*data = g_variant_new_string(signal_edge_names[0]);//idx]);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
/* Helper for mapping a string-typed configuration value to an index
* within a table of possible values.
*/
static int lookup_index(GVariant *value, const char *const *table, int len)
{
const char *entry;
int i;
entry = g_variant_get_string(value, NULL);
if (!entry)
return -1;
/* Linear search is fine for very small tables. */
for (i = 0; i < len; i++) {
if (strcmp(entry, table[i]) == 0)
return i;
}
return -1;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
uint64_t arg;
int i, ret;
gdouble low, high;
(void)cg;
if (!sdi)
return SR_ERR_ARG;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
devc = sdi->priv;
ret = SR_OK;
switch (key) {
case SR_CONF_SAMPLERATE:
arg = g_variant_get_uint64(data);
for (i = 0; i < devc->num_samplerates; i++) {
if (devc->samplerates[i] == arg) {
devc->cur_samplerate = arg;
break;
}
}
if (i == devc->num_samplerates)
ret = SR_ERR_ARG;
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_samples = g_variant_get_uint64(data);
break;
case SR_CONF_CAPTURE_RATIO:
devc->capture_ratio = g_variant_get_uint64(data);
ret = (devc->capture_ratio > 100) ? SR_ERR : SR_OK;
break;
case SR_CONF_VOLTAGE_THRESHOLD:
g_variant_get(data, "(dd)", &low, &high);
ret = SR_ERR_ARG;
for (i = 0; (unsigned int)i < ARRAY_SIZE(volt_thresholds); i++) {
if (fabs(volt_thresholds[i].low - low) < 0.1 &&
fabs(volt_thresholds[i].high - high) < 0.1) {
devc->dslogic_voltage_threshold = volt_thresholds[i].range;
break;
}
}
if (!strcmp(devc->profile->model, "DSLogic")) {
if (devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_5_V)
ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_FPGA_FIRMWARE_5V);
else
ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_FPGA_FIRMWARE_3V3);
}else if (!strcmp(devc->profile->model, "DSLogic Pro")){
ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_PRO_FPGA_FIRMWARE);
}
break;
case SR_CONF_EXTERNAL_CLOCK:
devc->dslogic_external_clock = g_variant_get_boolean(data);
break;
case SR_CONF_CONTINUOUS:
devc->dslogic_continuous_mode = g_variant_get_boolean(data);
break;
case SR_CONF_CLOCK_EDGE:
i = lookup_index(data, signal_edge_names,
ARRAY_SIZE(signal_edge_names));
if (i < 0)
return SR_ERR_ARG;
devc->dslogic_clock_edge = i;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *gvar, *range[2];
GVariantBuilder gvb;
unsigned int i;
(void)cg;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
if (!sdi)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
else{
devc = sdi->priv;
if (!devc->dslogic)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
else
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
dslogic_devopts, ARRAY_SIZE(dslogic_devopts), sizeof(uint32_t));
}
break;
case SR_CONF_VOLTAGE_THRESHOLD:
if (!sdi->priv) return SR_ERR_ARG;
devc = sdi->priv;
if (!devc->dslogic) return SR_ERR_NA;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) {
range[0] = g_variant_new_double(volt_thresholds[i].low);
range[1] = g_variant_new_double(volt_thresholds[i].high);
gvar = g_variant_new_tuple(range, 2);
g_variant_builder_add_value(&gvb, gvar);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_SAMPLERATE:
if (!sdi->priv)
return SR_ERR_ARG;
devc = sdi->priv;
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), devc->samplerates,
devc->num_samplerates, sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
soft_trigger_matches, ARRAY_SIZE(soft_trigger_matches),
sizeof(int32_t));
break;
case SR_CONF_CLOCK_EDGE:
*data = g_variant_new_strv(signal_edge_names,
ARRAY_SIZE(signal_edge_names));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct timeval tv;
struct drv_context *drvc;
(void)fd;
(void)revents;
drvc = (struct drv_context *)cb_data;
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
return TRUE;
}
static int start_transfers(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct sr_trigger *trigger;
struct libusb_transfer *transfer;
unsigned int i, num_transfers;
int endpoint, timeout, ret;
unsigned char *buf;
size_t size;
devc = sdi->priv;
usb = sdi->conn;
devc->sent_samples = 0;
devc->acq_aborted = FALSE;
devc->empty_transfer_count = 0;
if ((trigger = sr_session_trigger_get(sdi->session)) && !devc->dslogic) {
int pre_trigger_samples = 0;
if (devc->limit_samples > 0)
pre_trigger_samples = devc->capture_ratio * devc->limit_samples/100;
devc->stl = soft_trigger_logic_new(sdi, trigger, pre_trigger_samples);
if (!devc->stl)
return SR_ERR_MALLOC;
devc->trigger_fired = FALSE;
} else
devc->trigger_fired = TRUE;
num_transfers = fx2lafw_get_number_of_transfers(devc);
//if (devc->dslogic)
// num_transfers = dslogic_get_number_of_transfers(devc);
if ( devc->dslogic){
if(devc->cur_samplerate == SR_MHZ(100))
num_transfers = 16;
else if (devc->cur_samplerate == SR_MHZ(200))
num_transfers = 8;
else if (devc->cur_samplerate == SR_MHZ(400))
num_transfers = 4;
}
size = fx2lafw_get_buffer_size(devc);
devc->submitted_transfers = 0;
devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers);
if (!devc->transfers) {
sr_err("USB transfers malloc failed.");
return SR_ERR_MALLOC;
}
timeout = fx2lafw_get_timeout(devc);
endpoint = devc->dslogic ? 6 : 2;
devc->num_transfers = num_transfers;
for (i = 0; i < num_transfers; i++) {
if (!(buf = g_try_malloc(size))) {
sr_err("USB transfer buffer malloc failed.");
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
endpoint | LIBUSB_ENDPOINT_IN, buf, size,
fx2lafw_receive_transfer, (void *)sdi, timeout);
sr_info("submitting transfer: %d", i);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
fx2lafw_abort_acquisition(devc);
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
}
if (devc->profile->dev_caps & DEV_CAPS_AX_ANALOG)
devc->send_data_proc = mso_send_data_proc;
else
devc->send_data_proc = la_send_data_proc;
std_session_send_df_header(sdi, LOG_PREFIX);
return SR_OK;
}
static void LIBUSB_CALL dslogic_trigger_receive(struct libusb_transfer *transfer)
{
const struct sr_dev_inst *sdi;
struct dslogic_trigger_pos *tpos;
struct dev_context *devc;
sdi = transfer->user_data;
devc = sdi->priv;
if (transfer->status == LIBUSB_TRANSFER_CANCELLED) {
sr_dbg("Trigger transfer canceled.");
/* Terminate session. */
std_session_send_df_end(sdi, LOG_PREFIX);
usb_source_remove(sdi->session, devc->ctx);
devc->num_transfers = 0;
g_free(devc->transfers);
if (devc->stl) {
soft_trigger_logic_free(devc->stl);
devc->stl = NULL;
}
} else if (transfer->status == LIBUSB_TRANSFER_COMPLETED
&& transfer->actual_length == sizeof(struct dslogic_trigger_pos)) {
tpos = (struct dslogic_trigger_pos *)transfer->buffer;
sr_info("tpos real_pos %d ram_saddr %d cnt %d", tpos->real_pos, tpos->ram_saddr, tpos->remain_cnt);
devc->trigger_pos = tpos->real_pos;
g_free(tpos);
start_transfers(sdi);
}
libusb_free_transfer(transfer);
}
static int dslogic_trigger_request(const struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
struct dslogic_trigger_pos *tpos;
struct dev_context *devc;
int ret;
usb = sdi->conn;
devc = sdi->priv;
if ((ret = dslogic_stop_acquisition(sdi)) != SR_OK)
return ret;
if ((ret = dslogic_fpga_configure(sdi)) != SR_OK)
return ret;
/* if this is a dslogic pro, set the voltage threshold */
if (!strcmp(devc->profile->model, "DSLogic Pro")){
if(devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_18_33_V){
dslogic_set_vth(sdi, 1.4);
}else{
dslogic_set_vth(sdi, 3.3);
}
}
if ((ret = dslogic_start_acquisition(sdi)) != SR_OK)
return ret;
sr_dbg("Getting trigger.");
tpos = g_malloc(sizeof(struct dslogic_trigger_pos));
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN,
(unsigned char *)tpos, sizeof(struct dslogic_trigger_pos),
dslogic_trigger_receive, (void *)sdi, 0);
if ((ret = libusb_submit_transfer(transfer)) < 0) {
sr_err("Failed to request trigger: %s.", libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(tpos);
return SR_ERR;
}
devc->transfers = g_try_malloc0(sizeof(*devc->transfers));
if (!devc->transfers) {
sr_err("USB trigger_pos transfer malloc failed.");
return SR_ERR_MALLOC;
}
devc->num_transfers = 1;
devc->submitted_transfers++;
devc->transfers[0] = transfer;
return ret;
}
static int configure_channels(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const GSList *l;
int p;
struct sr_channel *ch;
devc = sdi->priv;
g_slist_free(devc->enabled_analog_channels);
devc->enabled_analog_channels = NULL;
memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
for (l = sdi->channels, p = 0; l; l = l->next, p++) {
ch = l->data;
if ((p <= NUM_CHANNELS) && (ch->type == SR_CHANNEL_ANALOG)) {
devc->ch_enabled[p] = ch->enabled;
devc->enabled_analog_channels =
g_slist_append(devc->enabled_analog_channels, ch);
}
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct sr_dev_driver *di;
struct drv_context *drvc;
struct dev_context *devc;
int timeout, ret;
size_t size;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
di = sdi->driver;
drvc = di->context;
devc = sdi->priv;
devc->ctx = drvc->sr_ctx;
devc->sent_samples = 0;
devc->empty_transfer_count = 0;
devc->acq_aborted = FALSE;
if (configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
timeout = fx2lafw_get_timeout(devc);
usb_source_add(sdi->session, devc->ctx, timeout, receive_data, drvc);
if (devc->dslogic) {
dslogic_trigger_request(sdi);
} else {
size = fx2lafw_get_buffer_size(devc);
/* Prepare for analog sampling. */
if (devc->profile->dev_caps & DEV_CAPS_AX_ANALOG) {
/* We need a buffer half the size of a transfer. */
devc->logic_buffer = g_try_malloc(size / 2);
devc->analog_buffer = g_try_malloc(
sizeof(float) * size / 2);
}
start_transfers(sdi);
if ((ret = fx2lafw_command_start_acquisition(sdi)) != SR_OK) {
fx2lafw_abort_acquisition(devc);
return ret;
}
}
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (devc->dslogic)
dslogic_stop_acquisition(sdi);
fx2lafw_abort_acquisition(sdi->priv);
return SR_OK;
}
SR_PRIV struct sr_dev_driver fx2lafw_driver_info = {
.name = "fx2lafw",
.longname = "fx2lafw (generic driver for FX2 based LAs)",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};