libsigrok/src/strutil.c

670 lines
16 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <ctype.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <errno.h>
#include <stdbool.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
/** @cond PRIVATE */
#define LOG_PREFIX "strutil"
/** @endcond */
/**
* @file
*
* Helper functions for handling or converting libsigrok-related strings.
*/
/**
* @defgroup grp_strutil String utilities
*
* Helper functions for handling or converting libsigrok-related strings.
*
* @{
*/
/**
* @private
*
* Convert a string representation of a numeric value (base 10) to a long integer. The
* conversion is strict and will fail if the complete string does not represent
* a valid long integer. The function sets errno according to the details of the
* failure.
*
* @param str The string representation to convert.
* @param ret Pointer to long where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atol(const char *str, long *ret)
{
long tmp;
char *endptr = NULL;
errno = 0;
tmp = strtol(str, &endptr, 10);
while (endptr && isspace(*endptr))
endptr++;
if (!endptr || *endptr || errno) {
if (!errno)
errno = EINVAL;
return SR_ERR;
}
*ret = tmp;
return SR_OK;
}
/**
* @private
*
* Convert a string representation of a numeric value (base 10) to an integer. The
* conversion is strict and will fail if the complete string does not represent
* a valid integer. The function sets errno according to the details of the
* failure.
*
* @param str The string representation to convert.
* @param ret Pointer to int where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atoi(const char *str, int *ret)
{
long tmp;
if (sr_atol(str, &tmp) != SR_OK)
return SR_ERR;
if ((int) tmp != tmp) {
errno = ERANGE;
return SR_ERR;
}
*ret = (int) tmp;
return SR_OK;
}
/**
* @private
*
* Convert a string representation of a numeric value to a double. The
* conversion is strict and will fail if the complete string does not represent
* a valid double. The function sets errno according to the details of the
* failure.
*
* @param str The string representation to convert.
* @param ret Pointer to double where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atod(const char *str, double *ret)
{
double tmp;
char *endptr = NULL;
errno = 0;
tmp = strtof(str, &endptr);
while (endptr && isspace(*endptr))
endptr++;
if (!endptr || *endptr || errno) {
if (!errno)
errno = EINVAL;
return SR_ERR;
}
*ret = tmp;
return SR_OK;
}
/**
* @private
*
* Convert a string representation of a numeric value to a float. The
* conversion is strict and will fail if the complete string does not represent
* a valid float. The function sets errno according to the details of the
* failure.
*
* @param str The string representation to convert.
* @param ret Pointer to float where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atof(const char *str, float *ret)
{
double tmp;
if (sr_atod(str, &tmp) != SR_OK)
return SR_ERR;
if ((float) tmp != tmp) {
errno = ERANGE;
return SR_ERR;
}
*ret = (float) tmp;
return SR_OK;
}
/**
* @private
*
* Convert a string representation of a numeric value to a double. The
* conversion is strict and will fail if the complete string does not represent
* a valid double. The function sets errno according to the details of the
* failure. This version ignores the locale.
*
* @param str The string representation to convert.
* @param ret Pointer to double where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atod_ascii(const char *str, double *ret)
{
double tmp;
char *endptr = NULL;
errno = 0;
tmp = g_ascii_strtod(str, &endptr);
if (!endptr || *endptr || errno) {
if (!errno)
errno = EINVAL;
return SR_ERR;
}
*ret = tmp;
return SR_OK;
}
/**
* @private
*
* Convert a string representation of a numeric value to a float. The
* conversion is strict and will fail if the complete string does not represent
* a valid float. The function sets errno according to the details of the
* failure. This version ignores the locale.
*
* @param str The string representation to convert.
* @param ret Pointer to float where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*/
SR_PRIV int sr_atof_ascii(const char *str, float *ret)
{
double tmp;
char *endptr = NULL;
errno = 0;
tmp = g_ascii_strtod(str, &endptr);
if (!endptr || *endptr || errno) {
if (!errno)
errno = EINVAL;
return SR_ERR;
}
/* FIXME This fails unexpectedly. Some other method to safel downcast
* needs to be found. Checking against FLT_MAX doesn't work as well. */
/*
if ((float) tmp != tmp) {
errno = ERANGE;
sr_dbg("ERANGEEEE %e != %e", (float) tmp, tmp);
return SR_ERR;
}
*/
*ret = (float) tmp;
return SR_OK;
}
/**
* Convert a string representation of a numeric value to a sr_rational.
*
* The conversion is strict and will fail if the complete string does not
* represent a valid number. The function sets errno according to the details
* of the failure. This version ignores the locale.
*
* @param str The string representation to convert.
* @param ret Pointer to sr_rational where the result of the conversion will be stored.
*
* @retval SR_OK Conversion successful.
* @retval SR_ERR Failure.
*
* @since 0.5.0
*/
SR_API int sr_parse_rational(const char *str, struct sr_rational *ret)
{
char *endptr = NULL;
int64_t integral;
int64_t fractional = 0;
int64_t denominator = 1;
int32_t fractional_len = 0;
int32_t exponent = 0;
bool is_negative = false;
errno = 0;
integral = g_ascii_strtoll(str, &endptr, 10);
if (str == endptr && (str[0] == '-' || str[0] == '+') && str[1] == '.')
endptr += 1;
else if (errno)
return SR_ERR;
if (integral < 0 || str[0] == '-')
is_negative = true;
if (*endptr == '.') {
const char* start = endptr + 1;
fractional = g_ascii_strtoll(start, &endptr, 10);
if (errno)
return SR_ERR;
fractional_len = endptr - start;
}
if ((*endptr == 'E') || (*endptr == 'e')) {
exponent = g_ascii_strtoll(endptr + 1, &endptr, 10);
if (errno)
return SR_ERR;
}
if (*endptr != '\0')
return SR_ERR;
for (int i = 0; i < fractional_len; i++)
integral *= 10;
exponent -= fractional_len;
if (!is_negative)
integral += fractional;
else
integral -= fractional;
while (exponent > 0) {
integral *= 10;
exponent--;
}
while (exponent < 0) {
denominator *= 10;
exponent++;
}
ret->p = integral;
ret->q = denominator;
return SR_OK;
}
/**
* Convert a numeric value value to its "natural" string representation
* in SI units.
*
* E.g. a value of 3000000, with units set to "W", would be converted
* to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW".
*
* @param x The value to convert.
* @param unit The unit to append to the string, or NULL if the string
* has no units.
*
* @return A newly allocated string representation of the samplerate value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*
* @since 0.2.0
*/
SR_API char *sr_si_string_u64(uint64_t x, const char *unit)
{
uint8_t i;
uint64_t quot, divisor[] = {
SR_HZ(1), SR_KHZ(1), SR_MHZ(1), SR_GHZ(1),
SR_GHZ(1000), SR_GHZ(1000 * 1000), SR_GHZ(1000 * 1000 * 1000),
};
const char *p, prefix[] = "\0kMGTPE";
char fmt[16], fract[20] = "", *f;
if (!unit)
unit = "";
for (i = 0; (quot = x / divisor[i]) >= 1000; i++);
if (i) {
sprintf(fmt, ".%%0%d"PRIu64, i * 3);
f = fract + sprintf(fract, fmt, x % divisor[i]) - 1;
while (f >= fract && strchr("0.", *f))
*f-- = 0;
}
p = prefix + i;
return g_strdup_printf("%" PRIu64 "%s %.1s%s", quot, fract, p, unit);
}
/**
* Convert a numeric samplerate value to its "natural" string representation.
*
* E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz",
* 31500 would become "31.5 kHz".
*
* @param samplerate The samplerate in Hz.
*
* @return A newly allocated string representation of the samplerate value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*
* @since 0.1.0
*/
SR_API char *sr_samplerate_string(uint64_t samplerate)
{
return sr_si_string_u64(samplerate, "Hz");
}
/**
* Convert a numeric period value to the "natural" string representation
* of its period value.
*
* The period is specified as a rational number's numerator and denominator.
*
* E.g. a pair of (1, 5) would be converted to "200 ms", (10, 100) to "100 ms".
*
* @param v_p The period numerator.
* @param v_q The period denominator.
*
* @return A newly allocated string representation of the period value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*
* @since 0.5.0
*/
SR_API char *sr_period_string(uint64_t v_p, uint64_t v_q)
{
double freq, v;
int prec;
freq = 1 / ((double)v_p / v_q);
if (freq > SR_GHZ(1)) {
v = (double)v_p / v_q * 1000000000000.0;
prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
return g_strdup_printf("%.*f ps", prec, v);
} else if (freq > SR_MHZ(1)) {
v = (double)v_p / v_q * 1000000000.0;
prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
return g_strdup_printf("%.*f ns", prec, v);
} else if (freq > SR_KHZ(1)) {
v = (double)v_p / v_q * 1000000.0;
prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
return g_strdup_printf("%.*f us", prec, v);
} else if (freq > 1) {
v = (double)v_p / v_q * 1000.0;
prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
return g_strdup_printf("%.*f ms", prec, v);
} else {
v = (double)v_p / v_q;
prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
return g_strdup_printf("%.*f s", prec, v);
}
}
/**
* Convert a numeric voltage value to the "natural" string representation
* of its voltage value. The voltage is specified as a rational number's
* numerator and denominator.
*
* E.g. a value of 300000 would be converted to "300mV", 2 to "2V".
*
* @param v_p The voltage numerator.
* @param v_q The voltage denominator.
*
* @return A newly allocated string representation of the voltage value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*
* @since 0.2.0
*/
SR_API char *sr_voltage_string(uint64_t v_p, uint64_t v_q)
{
if (v_q == 1000)
return g_strdup_printf("%" PRIu64 " mV", v_p);
else if (v_q == 1)
return g_strdup_printf("%" PRIu64 " V", v_p);
else
return g_strdup_printf("%g V", (float)v_p / (float)v_q);
}
/**
* Convert a "natural" string representation of a size value to uint64_t.
*
* E.g. a value of "3k" or "3 K" would be converted to 3000, a value
* of "15M" would be converted to 15000000.
*
* Value representations other than decimal (such as hex or octal) are not
* supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported.
* Spaces (but not other whitespace) between value and suffix are allowed.
*
* @param sizestring A string containing a (decimal) size value.
* @param size Pointer to uint64_t which will contain the string's size value.
*
* @return SR_OK upon success, SR_ERR upon errors.
*
* @since 0.1.0
*/
SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size)
{
uint64_t multiplier;
int done;
double frac_part;
char *s;
*size = strtoull(sizestring, &s, 10);
multiplier = 0;
frac_part = 0;
done = FALSE;
while (s && *s && multiplier == 0 && !done) {
switch (*s) {
case ' ':
break;
case '.':
frac_part = g_ascii_strtod(s, &s);
break;
case 'k':
case 'K':
multiplier = SR_KHZ(1);
break;
case 'm':
case 'M':
multiplier = SR_MHZ(1);
break;
case 'g':
case 'G':
multiplier = SR_GHZ(1);
break;
case 't':
case 'T':
multiplier = SR_GHZ(1000);
break;
case 'p':
case 'P':
multiplier = SR_GHZ(1000 * 1000);
break;
case 'e':
case 'E':
multiplier = SR_GHZ(1000 * 1000 * 1000);
break;
default:
done = TRUE;
s--;
}
s++;
}
if (multiplier > 0) {
*size *= multiplier;
*size += frac_part * multiplier;
} else {
*size += frac_part;
}
if (s && *s && g_ascii_strcasecmp(s, "Hz"))
return SR_ERR;
return SR_OK;
}
/**
* Convert a "natural" string representation of a time value to an
* uint64_t value in milliseconds.
*
* E.g. a value of "3s" or "3 s" would be converted to 3000, a value
* of "15ms" would be converted to 15.
*
* Value representations other than decimal (such as hex or octal) are not
* supported. Only lower-case "s" and "ms" time suffixes are supported.
* Spaces (but not other whitespace) between value and suffix are allowed.
*
* @param timestring A string containing a (decimal) time value.
* @return The string's time value as uint64_t, in milliseconds.
*
* @todo Add support for "m" (minutes) and others.
* @todo Add support for picoseconds?
* @todo Allow both lower-case and upper-case? If no, document it.
*
* @since 0.1.0
*/
SR_API uint64_t sr_parse_timestring(const char *timestring)
{
uint64_t time_msec;
char *s;
/* TODO: Error handling, logging. */
time_msec = strtoull(timestring, &s, 10);
if (time_msec == 0 && s == timestring)
return 0;
if (s && *s) {
while (*s == ' ')
s++;
if (!strcmp(s, "s"))
time_msec *= 1000;
else if (!strcmp(s, "ms"))
; /* redundant */
else
return 0;
}
return time_msec;
}
/** @since 0.1.0 */
SR_API gboolean sr_parse_boolstring(const char *boolstr)
{
/*
* Complete absence of an input spec is assumed to mean TRUE,
* as in command line option strings like this:
* ...:samplerate=100k:header:numchannels=4:...
*/
if (!boolstr || !*boolstr)
return TRUE;
if (!g_ascii_strncasecmp(boolstr, "true", 4) ||
!g_ascii_strncasecmp(boolstr, "yes", 3) ||
!g_ascii_strncasecmp(boolstr, "on", 2) ||
!g_ascii_strncasecmp(boolstr, "1", 1))
return TRUE;
return FALSE;
}
/** @since 0.2.0 */
SR_API int sr_parse_period(const char *periodstr, uint64_t *p, uint64_t *q)
{
char *s;
*p = strtoull(periodstr, &s, 10);
if (*p == 0 && s == periodstr)
/* No digits found. */
return SR_ERR_ARG;
if (s && *s) {
while (*s == ' ')
s++;
if (!strcmp(s, "fs"))
*q = 1000000000000000ULL;
else if (!strcmp(s, "ps"))
*q = 1000000000000ULL;
else if (!strcmp(s, "ns"))
*q = 1000000000ULL;
else if (!strcmp(s, "us"))
*q = 1000000;
else if (!strcmp(s, "ms"))
*q = 1000;
else if (!strcmp(s, "s"))
*q = 1;
else
/* Must have a time suffix. */
return SR_ERR_ARG;
}
return SR_OK;
}
/** @since 0.2.0 */
SR_API int sr_parse_voltage(const char *voltstr, uint64_t *p, uint64_t *q)
{
char *s;
*p = strtoull(voltstr, &s, 10);
if (*p == 0 && s == voltstr)
/* No digits found. */
return SR_ERR_ARG;
if (s && *s) {
while (*s == ' ')
s++;
if (!g_ascii_strcasecmp(s, "mv"))
*q = 1000L;
else if (!g_ascii_strcasecmp(s, "v"))
*q = 1;
else
/* Must have a base suffix. */
return SR_ERR_ARG;
}
return SR_OK;
}
/** @} */