libsigrok/bindings/cxx/classes.cpp

1687 lines
39 KiB
C++

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013-2014 Martin Ling <martin-sigrok@earth.li>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Needed for isascii(), as used in the GNU libstdc++ headers */
/* Needed in strutil.c for POSIX.1-2008 locale functions */
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 700
#endif
#include <config.h>
#include <libsigrokcxx/libsigrokcxx.hpp>
#include <sstream>
#include <cmath>
namespace sigrok
{
using namespace std;
/** Helper function to translate C errors to C++ exceptions. */
static void check(int result)
{
if (result != SR_OK)
throw Error(result);
}
/** Helper function to obtain valid strings from possibly null input. */
static inline const char *valid_string(const char *input)
{
return (input) ? input : "";
}
/** Helper function to convert between map<string, VariantBase> and GHashTable */
static GHashTable *map_to_hash_variant(const map<string, Glib::VariantBase> &input)
{
auto *const output = g_hash_table_new_full(g_str_hash, g_str_equal, g_free,
reinterpret_cast<GDestroyNotify>(&g_variant_unref));
for (const auto &entry : input)
g_hash_table_insert(output,
g_strdup(entry.first.c_str()),
entry.second.gobj_copy());
return output;
}
Error::Error(int result) : result(result)
{
}
const char *Error::what() const noexcept
{
return sr_strerror(result);
}
Error::~Error() noexcept
{
}
ResourceReader::~ResourceReader()
{
}
SR_PRIV int ResourceReader::open_callback(struct sr_resource *res,
const char *name, void *cb_data) noexcept
{
try {
auto *const reader = static_cast<ResourceReader*>(cb_data);
reader->open(res, name);
} catch (const Error &err) {
return err.result;
} catch (...) {
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int ResourceReader::close_callback(struct sr_resource *res,
void *cb_data) noexcept
{
try {
auto *const reader = static_cast<ResourceReader*>(cb_data);
reader->close(res);
} catch (const Error &err) {
return err.result;
} catch (...) {
return SR_ERR;
}
return SR_OK;
}
SR_PRIV gssize ResourceReader::read_callback(const struct sr_resource *res,
void *buf, size_t count, void *cb_data) noexcept
{
try {
auto *const reader = static_cast<ResourceReader*>(cb_data);
return reader->read(res, buf, count);
} catch (const Error &err) {
return err.result;
} catch (...) {
return SR_ERR;
}
}
shared_ptr<Context> Context::create()
{
return shared_ptr<Context>{new Context{}, default_delete<Context>{}};
}
Context::Context() :
_structure(nullptr),
_session(nullptr)
{
check(sr_init(&_structure));
if (struct sr_dev_driver **driver_list = sr_driver_list(_structure))
for (int i = 0; driver_list[i]; i++) {
unique_ptr<Driver> driver {new Driver{driver_list[i]}};
_drivers.emplace(driver->name(), move(driver));
}
if (const struct sr_input_module **input_list = sr_input_list())
for (int i = 0; input_list[i]; i++) {
unique_ptr<InputFormat> input {new InputFormat{input_list[i]}};
_input_formats.emplace(input->name(), move(input));
}
if (const struct sr_output_module **output_list = sr_output_list())
for (int i = 0; output_list[i]; i++) {
unique_ptr<OutputFormat> output {new OutputFormat{output_list[i]}};
_output_formats.emplace(output->name(), move(output));
}
}
string Context::package_version()
{
return sr_package_version_string_get();
}
string Context::lib_version()
{
return sr_lib_version_string_get();
}
map<string, shared_ptr<Driver>> Context::drivers()
{
map<string, shared_ptr<Driver>> result;
for (const auto &entry: _drivers) {
const auto &name = entry.first;
const auto &driver = entry.second;
result.emplace(name, driver->share_owned_by(shared_from_this()));
}
return result;
}
map<string, shared_ptr<InputFormat>> Context::input_formats()
{
map<string, shared_ptr<InputFormat>> result;
for (const auto &entry: _input_formats) {
const auto &name = entry.first;
const auto &input_format = entry.second;
result.emplace(name, input_format->share_owned_by(shared_from_this()));
}
return result;
}
shared_ptr<InputFormat> Context::input_format_match(string filename)
{
const struct sr_input *input;
const struct sr_input_module *imod;
int rc;
/*
* Have the input module looked up for the specified file.
* Failed lookup (or "successful lookup" with an empty result)
* are non-fatal. Free the sr_input that was created by the
* lookup routine, but grab the input module kind and return an
* InputFormat instance to the application. This works because
* the application passes a filename, no input data got buffered
* in the sr_input that we release.
*/
input = NULL;
rc = sr_input_scan_file(filename.c_str(), &input);
if (rc != SR_OK)
return nullptr;
if (!input)
return nullptr;
imod = sr_input_module_get(input);
sr_input_free(input);
return shared_ptr<InputFormat>{new InputFormat{imod}, default_delete<InputFormat>{}};
}
map<string, shared_ptr<OutputFormat>> Context::output_formats()
{
map<string, shared_ptr<OutputFormat>> result;
for (const auto &entry: _output_formats) {
const auto &name = entry.first;
const auto &output_format = entry.second;
result.emplace(name, output_format->share_owned_by(shared_from_this()));
}
return result;
}
Context::~Context()
{
check(sr_exit(_structure));
}
const LogLevel *Context::log_level() const
{
return LogLevel::get(sr_log_loglevel_get());
}
void Context::set_log_level(const LogLevel *level)
{
check(sr_log_loglevel_set(level->id()));
}
static int call_log_callback(void *cb_data, int loglevel,
const char *format, va_list args) noexcept
{
const unique_ptr<char, decltype(&g_free)>
message {g_strdup_vprintf(format, args), &g_free};
auto *const callback = static_cast<LogCallbackFunction *>(cb_data);
try {
(*callback)(LogLevel::get(loglevel), message.get());
} catch (Error &e) {
return e.result;
}
return SR_OK;
}
void Context::set_log_callback(LogCallbackFunction callback)
{
_log_callback = move(callback);
check(sr_log_callback_set(call_log_callback, &_log_callback));
}
void Context::set_log_callback_default()
{
check(sr_log_callback_set_default());
_log_callback = nullptr;
}
void Context::set_resource_reader(ResourceReader *reader)
{
if (reader) {
check(sr_resource_set_hooks(_structure,
&ResourceReader::open_callback,
&ResourceReader::close_callback,
&ResourceReader::read_callback, reader));
} else {
check(sr_resource_set_hooks(_structure,
nullptr, nullptr, nullptr, nullptr));
}
}
shared_ptr<Session> Context::create_session()
{
return shared_ptr<Session>{new Session{shared_from_this()},
default_delete<Session>{}};
}
shared_ptr<UserDevice> Context::create_user_device(
string vendor, string model, string version)
{
return shared_ptr<UserDevice>{
new UserDevice{move(vendor), move(model), move(version)},
default_delete<UserDevice>{}};
}
shared_ptr<Packet> Context::create_header_packet(Glib::TimeVal start_time)
{
auto header = g_new(struct sr_datafeed_header, 1);
header->feed_version = 1;
header->starttime.tv_sec = start_time.tv_sec;
header->starttime.tv_usec = start_time.tv_usec;
auto packet = g_new(struct sr_datafeed_packet, 1);
packet->type = SR_DF_HEADER;
packet->payload = header;
return shared_ptr<Packet>{new Packet{nullptr, packet},
default_delete<Packet>{}};
}
shared_ptr<Packet> Context::create_meta_packet(
map<const ConfigKey *, Glib::VariantBase> config)
{
auto meta = g_new0(struct sr_datafeed_meta, 1);
for (const auto &input : config) {
const auto &key = input.first;
const auto &value = input.second;
auto *const output = g_new(struct sr_config, 1);
output->key = key->id();
output->data = value.gobj_copy();
meta->config = g_slist_append(meta->config, output);
}
auto packet = g_new(struct sr_datafeed_packet, 1);
packet->type = SR_DF_META;
packet->payload = meta;
return shared_ptr<Packet>{new Packet{nullptr, packet},
default_delete<Packet>{}};
}
shared_ptr<Packet> Context::create_logic_packet(
void *data_pointer, size_t data_length, unsigned int unit_size)
{
auto logic = g_new(struct sr_datafeed_logic, 1);
logic->length = data_length;
logic->unitsize = unit_size;
logic->data = data_pointer;
auto packet = g_new(struct sr_datafeed_packet, 1);
packet->type = SR_DF_LOGIC;
packet->payload = logic;
return shared_ptr<Packet>{new Packet{nullptr, packet}, default_delete<Packet>{}};
}
shared_ptr<Packet> Context::create_analog_packet(
vector<shared_ptr<Channel> > channels,
const float *data_pointer, unsigned int num_samples, const Quantity *mq,
const Unit *unit, vector<const QuantityFlag *> mqflags)
{
auto analog = g_new0(struct sr_datafeed_analog, 1);
auto meaning = g_new0(struct sr_analog_meaning, 1);
auto encoding = g_new0(struct sr_analog_encoding, 1);
auto spec = g_new0(struct sr_analog_spec, 1);
analog->meaning = meaning;
for (const auto &channel : channels)
meaning->channels = g_slist_append(meaning->channels, channel->_structure);
meaning->mq = static_cast<sr_mq>(mq->id());
meaning->unit = static_cast<sr_unit>(unit->id());
meaning->mqflags = static_cast<sr_mqflag>(QuantityFlag::mask_from_flags(move(mqflags)));
analog->encoding = encoding;
encoding->unitsize = sizeof(float);
encoding->is_signed = TRUE;
encoding->is_float = TRUE;
#ifdef WORDS_BIGENDIAN
encoding->is_bigendian = TRUE;
#else
encoding->is_bigendian = FALSE;
#endif
encoding->digits = 0;
encoding->is_digits_decimal = FALSE;
encoding->scale.p = 1;
encoding->scale.q = 1;
encoding->offset.p = 0;
encoding->offset.q = 1;
analog->spec = spec;
spec->spec_digits = 0;
analog->num_samples = num_samples;
analog->data = (float*)data_pointer;
auto packet = g_new(struct sr_datafeed_packet, 1);
packet->type = SR_DF_ANALOG;
packet->payload = analog;
return shared_ptr<Packet>{new Packet{nullptr, packet}, default_delete<Packet>{}};
}
shared_ptr<Packet> Context::create_end_packet()
{
auto packet = g_new(struct sr_datafeed_packet, 1);
packet->type = SR_DF_END;
return shared_ptr<Packet>{new Packet{nullptr, packet},
default_delete<Packet>{}};
}
shared_ptr<Session> Context::load_session(string filename)
{
return shared_ptr<Session>{
new Session{shared_from_this(), move(filename)},
default_delete<Session>{}};
}
shared_ptr<Trigger> Context::create_trigger(string name)
{
return shared_ptr<Trigger>{
new Trigger{shared_from_this(), move(name)},
default_delete<Trigger>{}};
}
shared_ptr<Input> Context::open_file(string filename)
{
const struct sr_input *input;
check(sr_input_scan_file(filename.c_str(), &input));
return shared_ptr<Input>{
new Input{shared_from_this(), input},
default_delete<Input>{}};
}
shared_ptr<Input> Context::open_stream(string header)
{
const struct sr_input *input;
auto gstr = g_string_new(header.c_str());
auto ret = sr_input_scan_buffer(gstr, &input);
g_string_free(gstr, true);
check(ret);
return shared_ptr<Input>{
new Input{shared_from_this(), input},
default_delete<Input>{}};
}
map<string, string> Context::serials(shared_ptr<Driver> driver) const
{
GSList *serial_list = sr_serial_list(driver ? driver->_structure : nullptr);
map<string, string> serials;
for (GSList *serial = serial_list; serial; serial = serial->next) {
auto *const port = static_cast<sr_serial_port *>(serial->data);
serials[string(port->name)] = string(port->description);
}
g_slist_free_full(serial_list,
reinterpret_cast<GDestroyNotify>(&sr_serial_free));
return serials;
}
Driver::Driver(struct sr_dev_driver *structure) :
Configurable(structure, nullptr, nullptr),
_structure(structure),
_initialized(false)
{
}
Driver::~Driver()
{
}
string Driver::name() const
{
return valid_string(_structure->name);
}
string Driver::long_name() const
{
return valid_string(_structure->longname);
}
set<const ConfigKey *> Driver::scan_options() const
{
GArray *opts = sr_driver_scan_options_list(_structure);
set<const ConfigKey *> result;
if (opts) {
for (guint i = 0; i < opts->len; i++)
result.insert(ConfigKey::get(g_array_index(opts, uint32_t, i)));
g_array_free(opts, TRUE);
}
return result;
}
vector<shared_ptr<HardwareDevice>> Driver::scan(
map<const ConfigKey *, Glib::VariantBase> options)
{
/* Initialise the driver if not yet done. */
if (!_initialized) {
check(sr_driver_init(_parent->_structure, _structure));
_initialized = true;
}
/* Translate scan options to GSList of struct sr_config pointers. */
GSList *option_list = nullptr;
for (const auto &entry : options) {
const auto &key = entry.first;
const auto &value = entry.second;
auto *const config = g_new(struct sr_config, 1);
config->key = key->id();
config->data = const_cast<GVariant*>(value.gobj());
option_list = g_slist_append(option_list, config);
}
/* Run scan. */
GSList *device_list = sr_driver_scan(_structure, option_list);
/* Free option list. */
g_slist_free_full(option_list, g_free);
/* Create device objects. */
vector<shared_ptr<HardwareDevice>> result;
for (GSList *device = device_list; device; device = device->next) {
auto *const sdi = static_cast<struct sr_dev_inst *>(device->data);
shared_ptr<HardwareDevice> hwdev {
new HardwareDevice{shared_from_this(), sdi},
default_delete<HardwareDevice>{}};
result.push_back(move(hwdev));
}
/* Free GSList returned from scan. */
g_slist_free(device_list);
return result;
}
Configurable::Configurable(
struct sr_dev_driver *driver,
struct sr_dev_inst *sdi,
struct sr_channel_group *cg) :
config_driver(driver),
config_sdi(sdi),
config_channel_group(cg)
{
}
Configurable::~Configurable()
{
}
set<const ConfigKey *> Configurable::config_keys() const
{
GArray *opts;
set<const ConfigKey *> result;
opts = sr_dev_options(config_driver, config_sdi, config_channel_group);
if (opts) {
for (guint i = 0; i < opts->len; i++)
result.insert(ConfigKey::get(g_array_index(opts, uint32_t, i)));
g_array_free(opts, TRUE);
}
return result;
}
Glib::VariantBase Configurable::config_get(const ConfigKey *key) const
{
GVariant *data;
check(sr_config_get(
config_driver, config_sdi, config_channel_group,
key->id(), &data));
return Glib::VariantBase(data);
}
void Configurable::config_set(const ConfigKey *key, const Glib::VariantBase &value)
{
check(sr_config_set(
config_sdi, config_channel_group,
key->id(), const_cast<GVariant*>(value.gobj())));
}
set<const Capability *> Configurable::config_capabilities(const ConfigKey *key) const
{
int caps = sr_dev_config_capabilities_list(config_sdi,
config_channel_group, key->id());
set<const Capability *> result;
for (auto cap: Capability::values())
if (caps & cap->id())
result.insert(cap);
return result;
}
bool Configurable::config_check(const ConfigKey *key,
const Capability *capability) const
{
int caps = sr_dev_config_capabilities_list(config_sdi,
config_channel_group, key->id());
return (caps & capability->id());
}
Glib::VariantContainerBase Configurable::config_list(const ConfigKey *key) const
{
GVariant *data;
check(sr_config_list(
config_driver, config_sdi, config_channel_group,
key->id(), &data));
return Glib::VariantContainerBase(data);
}
Device::Device(struct sr_dev_inst *structure) :
Configurable(sr_dev_inst_driver_get(structure), structure, nullptr),
_structure(structure)
{
for (GSList *entry = sr_dev_inst_channels_get(structure); entry; entry = entry->next) {
auto *const ch = static_cast<struct sr_channel *>(entry->data);
unique_ptr<Channel> channel {new Channel{ch}};
_channels.emplace(ch, move(channel));
}
for (GSList *entry = sr_dev_inst_channel_groups_get(structure); entry; entry = entry->next) {
auto *const cg = static_cast<struct sr_channel_group *>(entry->data);
unique_ptr<ChannelGroup> group {new ChannelGroup{this, cg}};
_channel_groups.emplace(group->name(), move(group));
}
}
Device::~Device()
{
}
string Device::vendor() const
{
return valid_string(sr_dev_inst_vendor_get(_structure));
}
string Device::model() const
{
return valid_string(sr_dev_inst_model_get(_structure));
}
string Device::version() const
{
return valid_string(sr_dev_inst_version_get(_structure));
}
string Device::serial_number() const
{
return valid_string(sr_dev_inst_sernum_get(_structure));
}
string Device::connection_id() const
{
return valid_string(sr_dev_inst_connid_get(_structure));
}
vector<shared_ptr<Channel>> Device::channels()
{
vector<shared_ptr<Channel>> result;
for (auto channel = sr_dev_inst_channels_get(_structure); channel; channel = channel->next) {
auto *const ch = static_cast<struct sr_channel *>(channel->data);
result.push_back(_channels[ch]->share_owned_by(get_shared_from_this()));
}
return result;
}
shared_ptr<Channel> Device::get_channel(struct sr_channel *ptr)
{
return _channels[ptr]->share_owned_by(get_shared_from_this());
}
map<string, shared_ptr<ChannelGroup>>
Device::channel_groups()
{
map<string, shared_ptr<ChannelGroup>> result;
for (const auto &entry: _channel_groups) {
const auto &name = entry.first;
const auto &channel_group = entry.second;
result.emplace(name, channel_group->share_owned_by(get_shared_from_this()));
}
return result;
}
void Device::open()
{
check(sr_dev_open(_structure));
}
void Device::close()
{
check(sr_dev_close(_structure));
}
HardwareDevice::HardwareDevice(shared_ptr<Driver> driver,
struct sr_dev_inst *structure) :
Device(structure),
_driver(move(driver))
{
}
HardwareDevice::~HardwareDevice()
{
}
shared_ptr<Device> HardwareDevice::get_shared_from_this()
{
return static_pointer_cast<Device>(shared_from_this());
}
shared_ptr<Driver> HardwareDevice::driver()
{
return _driver;
}
UserDevice::UserDevice(string vendor, string model, string version) :
Device(sr_dev_inst_user_new(
vendor.c_str(), model.c_str(), version.c_str()))
{
}
UserDevice::~UserDevice()
{
}
shared_ptr<Device> UserDevice::get_shared_from_this()
{
return static_pointer_cast<Device>(shared_from_this());
}
shared_ptr<Channel> UserDevice::add_channel(unsigned int index,
const ChannelType *type, string name)
{
check(sr_dev_inst_channel_add(Device::_structure,
index, type->id(), name.c_str()));
GSList *const last = g_slist_last(sr_dev_inst_channels_get(Device::_structure));
auto *const ch = static_cast<struct sr_channel *>(last->data);
unique_ptr<Channel> channel {new Channel{ch}};
_channels.emplace(ch, move(channel));
return get_channel(ch);
}
Channel::Channel(struct sr_channel *structure) :
_structure(structure),
_type(ChannelType::get(_structure->type))
{
}
Channel::~Channel()
{
}
string Channel::name() const
{
return valid_string(_structure->name);
}
void Channel::set_name(string name)
{
check(sr_dev_channel_name_set(_structure, name.c_str()));
}
const ChannelType *Channel::type() const
{
return ChannelType::get(_structure->type);
}
bool Channel::enabled() const
{
return _structure->enabled;
}
void Channel::set_enabled(bool value)
{
check(sr_dev_channel_enable(_structure, value));
}
unsigned int Channel::index() const
{
return _structure->index;
}
ChannelGroup::ChannelGroup(const Device *device,
struct sr_channel_group *structure) :
Configurable(sr_dev_inst_driver_get(device->_structure), device->_structure, structure)
{
for (GSList *entry = config_channel_group->channels; entry; entry = entry->next) {
auto *const ch = static_cast<struct sr_channel *>(entry->data);
/* Note: This relies on Device::_channels to keep the Channel
* objects around over the lifetime of the ChannelGroup. */
_channels.push_back(device->_channels.find(ch)->second.get());
}
}
ChannelGroup::~ChannelGroup()
{
}
string ChannelGroup::name() const
{
return valid_string(config_channel_group->name);
}
vector<shared_ptr<Channel>> ChannelGroup::channels()
{
vector<shared_ptr<Channel>> result;
for (const auto &channel : _channels)
result.push_back(channel->share_owned_by(_parent));
return result;
}
Trigger::Trigger(shared_ptr<Context> context, string name) :
_structure(sr_trigger_new(name.c_str())),
_context(move(context))
{
for (auto *stage = _structure->stages; stage; stage = stage->next) {
unique_ptr<TriggerStage> ts {new TriggerStage{
static_cast<struct sr_trigger_stage *>(stage->data)}};
_stages.push_back(move(ts));
}
}
Trigger::~Trigger()
{
sr_trigger_free(_structure);
}
string Trigger::name() const
{
return _structure->name;
}
vector<shared_ptr<TriggerStage>> Trigger::stages()
{
vector<shared_ptr<TriggerStage>> result;
for (const auto &stage : _stages)
result.push_back(stage->share_owned_by(shared_from_this()));
return result;
}
shared_ptr<TriggerStage> Trigger::add_stage()
{
unique_ptr<TriggerStage> stage {new TriggerStage{sr_trigger_stage_add(_structure)}};
_stages.push_back(move(stage));
return _stages.back()->share_owned_by(shared_from_this());
}
TriggerStage::TriggerStage(struct sr_trigger_stage *structure) :
_structure(structure)
{
}
TriggerStage::~TriggerStage()
{
}
int TriggerStage::number() const
{
return _structure->stage;
}
vector<shared_ptr<TriggerMatch>> TriggerStage::matches()
{
vector<shared_ptr<TriggerMatch>> result;
for (const auto &match : _matches)
result.push_back(match->share_owned_by(shared_from_this()));
return result;
}
void TriggerStage::add_match(shared_ptr<Channel> channel,
const TriggerMatchType *type, float value)
{
check(sr_trigger_match_add(_structure,
channel->_structure, type->id(), value));
GSList *const last = g_slist_last(_structure->matches);
unique_ptr<TriggerMatch> match {new TriggerMatch{
static_cast<struct sr_trigger_match *>(last->data),
move(channel)}};
_matches.push_back(move(match));
}
void TriggerStage::add_match(shared_ptr<Channel> channel,
const TriggerMatchType *type)
{
add_match(move(channel), type, NAN);
}
TriggerMatch::TriggerMatch(struct sr_trigger_match *structure,
shared_ptr<Channel> channel) :
_structure(structure),
_channel(move(channel))
{
}
TriggerMatch::~TriggerMatch()
{
}
shared_ptr<Channel> TriggerMatch::channel()
{
return _channel;
}
const TriggerMatchType *TriggerMatch::type() const
{
return TriggerMatchType::get(_structure->match);
}
float TriggerMatch::value() const
{
return _structure->value;
}
DatafeedCallbackData::DatafeedCallbackData(Session *session,
DatafeedCallbackFunction callback) :
_callback(move(callback)),
_session(session)
{
}
void DatafeedCallbackData::run(const struct sr_dev_inst *sdi,
const struct sr_datafeed_packet *pkt)
{
auto device = _session->get_device(sdi);
shared_ptr<Packet> packet {new Packet{device, pkt}, default_delete<Packet>{}};
_callback(move(device), move(packet));
}
SessionDevice::SessionDevice(struct sr_dev_inst *structure) :
Device(structure)
{
}
SessionDevice::~SessionDevice()
{
}
shared_ptr<Device> SessionDevice::get_shared_from_this()
{
return static_pointer_cast<Device>(shared_from_this());
}
Session::Session(shared_ptr<Context> context) :
_structure(nullptr),
_context(move(context))
{
check(sr_session_new(_context->_structure, &_structure));
_context->_session = this;
}
Session::Session(shared_ptr<Context> context, string filename) :
_structure(nullptr),
_context(move(context)),
_filename(move(filename))
{
check(sr_session_load(_context->_structure, _filename.c_str(), &_structure));
GSList *dev_list;
check(sr_session_dev_list(_structure, &dev_list));
for (GSList *dev = dev_list; dev; dev = dev->next) {
auto *const sdi = static_cast<struct sr_dev_inst *>(dev->data);
unique_ptr<SessionDevice> device {new SessionDevice{sdi}};
_owned_devices.emplace(sdi, move(device));
}
_context->_session = this;
g_slist_free(dev_list);
}
Session::~Session()
{
check(sr_session_destroy(_structure));
}
shared_ptr<Device> Session::get_device(const struct sr_dev_inst *sdi)
{
if (_owned_devices.count(sdi))
return static_pointer_cast<Device>(
_owned_devices[sdi]->share_owned_by(shared_from_this()));
else if (_other_devices.count(sdi))
return _other_devices[sdi];
else
throw Error(SR_ERR_BUG);
}
void Session::add_device(shared_ptr<Device> device)
{
const auto dev_struct = device->_structure;
check(sr_session_dev_add(_structure, dev_struct));
_other_devices[dev_struct] = move(device);
}
vector<shared_ptr<Device>> Session::devices()
{
GSList *dev_list;
check(sr_session_dev_list(_structure, &dev_list));
vector<shared_ptr<Device>> result;
for (GSList *dev = dev_list; dev; dev = dev->next) {
auto *const sdi = static_cast<struct sr_dev_inst *>(dev->data);
result.push_back(get_device(sdi));
}
g_slist_free(dev_list);
return result;
}
void Session::remove_devices()
{
_other_devices.clear();
check(sr_session_dev_remove_all(_structure));
}
void Session::start()
{
check(sr_session_start(_structure));
}
void Session::run()
{
check(sr_session_run(_structure));
}
void Session::stop()
{
check(sr_session_stop(_structure));
}
bool Session::is_running() const
{
const int ret = sr_session_is_running(_structure);
if (ret < 0)
throw Error{ret};
return (ret != 0);
}
static void session_stopped_callback(void *data) noexcept
{
auto *const callback = static_cast<SessionStoppedCallback*>(data);
(*callback)();
}
void Session::set_stopped_callback(SessionStoppedCallback callback)
{
_stopped_callback = move(callback);
if (_stopped_callback)
check(sr_session_stopped_callback_set(_structure,
&session_stopped_callback, &_stopped_callback));
else
check(sr_session_stopped_callback_set(_structure,
nullptr, nullptr));
}
static void datafeed_callback(const struct sr_dev_inst *sdi,
const struct sr_datafeed_packet *pkt, void *cb_data) noexcept
{
auto callback = static_cast<DatafeedCallbackData *>(cb_data);
callback->run(sdi, pkt);
}
void Session::add_datafeed_callback(DatafeedCallbackFunction callback)
{
unique_ptr<DatafeedCallbackData> cb_data
{new DatafeedCallbackData{this, move(callback)}};
check(sr_session_datafeed_callback_add(_structure,
&datafeed_callback, cb_data.get()));
_datafeed_callbacks.push_back(move(cb_data));
}
void Session::remove_datafeed_callbacks()
{
check(sr_session_datafeed_callback_remove_all(_structure));
_datafeed_callbacks.clear();
}
shared_ptr<Trigger> Session::trigger()
{
return _trigger;
}
void Session::set_trigger(shared_ptr<Trigger> trigger)
{
if (!trigger)
// Set NULL trigger, i.e. remove any trigger from the session.
check(sr_session_trigger_set(_structure, nullptr));
else
check(sr_session_trigger_set(_structure, trigger->_structure));
_trigger = move(trigger);
}
string Session::filename() const
{
return _filename;
}
shared_ptr<Context> Session::context()
{
return _context;
}
Packet::Packet(shared_ptr<Device> device,
const struct sr_datafeed_packet *structure) :
_structure(structure),
_device(move(device))
{
switch (structure->type)
{
case SR_DF_HEADER:
_payload.reset(new Header{
static_cast<const struct sr_datafeed_header *>(
structure->payload)});
break;
case SR_DF_META:
_payload.reset(new Meta{
static_cast<const struct sr_datafeed_meta *>(
structure->payload)});
break;
case SR_DF_LOGIC:
_payload.reset(new Logic{
static_cast<const struct sr_datafeed_logic *>(
structure->payload)});
break;
case SR_DF_ANALOG:
_payload.reset(new Analog{
static_cast<const struct sr_datafeed_analog *>(
structure->payload)});
break;
}
}
Packet::~Packet()
{
}
const PacketType *Packet::type() const
{
return PacketType::get(_structure->type);
}
shared_ptr<PacketPayload> Packet::payload()
{
if (_payload)
return _payload->share_owned_by(shared_from_this());
else
throw Error(SR_ERR_NA);
}
PacketPayload::PacketPayload()
{
}
PacketPayload::~PacketPayload()
{
}
Header::Header(const struct sr_datafeed_header *structure) :
PacketPayload(),
_structure(structure)
{
}
Header::~Header()
{
}
shared_ptr<PacketPayload> Header::share_owned_by(shared_ptr<Packet> _parent)
{
return static_pointer_cast<PacketPayload>(
ParentOwned::share_owned_by(_parent));
}
int Header::feed_version() const
{
return _structure->feed_version;
}
Glib::TimeVal Header::start_time() const
{
return Glib::TimeVal(
_structure->starttime.tv_sec,
_structure->starttime.tv_usec);
}
Meta::Meta(const struct sr_datafeed_meta *structure) :
PacketPayload(),
_structure(structure)
{
}
Meta::~Meta()
{
}
shared_ptr<PacketPayload> Meta::share_owned_by(shared_ptr<Packet> _parent)
{
return static_pointer_cast<PacketPayload>(
ParentOwned::share_owned_by(_parent));
}
map<const ConfigKey *, Glib::VariantBase> Meta::config() const
{
map<const ConfigKey *, Glib::VariantBase> result;
for (auto l = _structure->config; l; l = l->next) {
auto *const config = static_cast<struct sr_config *>(l->data);
result[ConfigKey::get(config->key)] = Glib::VariantBase(config->data, true);
}
return result;
}
Logic::Logic(const struct sr_datafeed_logic *structure) :
PacketPayload(),
_structure(structure)
{
}
Logic::~Logic()
{
}
shared_ptr<PacketPayload> Logic::share_owned_by(shared_ptr<Packet> _parent)
{
return static_pointer_cast<PacketPayload>(
ParentOwned::share_owned_by(_parent));
}
void *Logic::data_pointer()
{
return _structure->data;
}
size_t Logic::data_length() const
{
return _structure->length;
}
unsigned int Logic::unit_size() const
{
return _structure->unitsize;
}
Analog::Analog(const struct sr_datafeed_analog *structure) :
PacketPayload(),
_structure(structure)
{
}
Analog::~Analog()
{
}
shared_ptr<PacketPayload> Analog::share_owned_by(shared_ptr<Packet> _parent)
{
return static_pointer_cast<PacketPayload>(
ParentOwned::share_owned_by(_parent));
}
void *Analog::data_pointer()
{
return _structure->data;
}
void Analog::get_data_as_float(float *dest)
{
check(sr_analog_to_float(_structure, dest));
}
unsigned int Analog::num_samples() const
{
return _structure->num_samples;
}
vector<shared_ptr<Channel>> Analog::channels()
{
vector<shared_ptr<Channel>> result;
for (auto l = _structure->meaning->channels; l; l = l->next) {
auto *const ch = static_cast<struct sr_channel *>(l->data);
result.push_back(_parent->_device->get_channel(ch));
}
return result;
}
unsigned int Analog::unitsize() const
{
return _structure->encoding->unitsize;
}
bool Analog::is_signed() const
{
return _structure->encoding->is_signed;
}
bool Analog::is_float() const
{
return _structure->encoding->is_float;
}
bool Analog::is_bigendian() const
{
return _structure->encoding->is_bigendian;
}
int Analog::digits() const
{
return _structure->encoding->digits;
}
bool Analog::is_digits_decimal() const
{
return _structure->encoding->is_digits_decimal;
}
shared_ptr<Rational> Analog::scale()
{
unique_ptr<Rational> scale;
scale.reset(new Rational(&(_structure->encoding->scale)));
if (scale)
return scale->share_owned_by(shared_from_this());
else
throw Error(SR_ERR_NA);
}
shared_ptr<Rational> Analog::offset()
{
unique_ptr<Rational> offset;
offset.reset(new Rational(&(_structure->encoding->offset)));
if (offset)
return offset->share_owned_by(shared_from_this());
else
throw Error(SR_ERR_NA);
}
const Quantity *Analog::mq() const
{
return Quantity::get(_structure->meaning->mq);
}
const Unit *Analog::unit() const
{
return Unit::get(_structure->meaning->unit);
}
vector<const QuantityFlag *> Analog::mq_flags() const
{
return QuantityFlag::flags_from_mask(_structure->meaning->mqflags);
}
shared_ptr<Logic> Analog::get_logic_via_threshold(float threshold,
uint8_t *data_ptr) const
{
auto datafeed = g_new(struct sr_datafeed_logic, 1);
datafeed->length = num_samples();
datafeed->unitsize = 1;
if (data_ptr)
datafeed->data = data_ptr;
else
datafeed->data = g_malloc(datafeed->length);
shared_ptr<Logic> logic =
shared_ptr<Logic>{new Logic{datafeed}, default_delete<Logic>{}};
check(sr_a2l_threshold(_structure, threshold,
(uint8_t*)datafeed->data, datafeed->length));
return logic;
}
shared_ptr<Logic> Analog::get_logic_via_schmitt_trigger(float lo_thr,
float hi_thr, uint8_t *state, uint8_t *data_ptr) const
{
auto datafeed = g_new(struct sr_datafeed_logic, 1);
datafeed->length = num_samples();
datafeed->unitsize = 1;
if (data_ptr)
datafeed->data = data_ptr;
else
datafeed->data = g_malloc(datafeed->length);
shared_ptr<Logic> logic =
shared_ptr<Logic>{new Logic{datafeed}, default_delete<Logic>{}};
check(sr_a2l_schmitt_trigger(_structure, lo_thr, hi_thr, state,
(uint8_t*)datafeed->data, datafeed->length));
return logic;
}
Rational::Rational(const struct sr_rational *structure) :
_structure(structure)
{
}
Rational::~Rational()
{
}
shared_ptr<Rational> Rational::share_owned_by(shared_ptr<Analog> _parent)
{
return static_pointer_cast<Rational>(
ParentOwned::share_owned_by(_parent));
}
int64_t Rational::numerator() const
{
return _structure->p;
}
uint64_t Rational::denominator() const
{
return _structure->q;
}
float Rational::value() const
{
return (float)(_structure->p) / (float)(_structure->q);
}
InputFormat::InputFormat(const struct sr_input_module *structure) :
_structure(structure)
{
}
InputFormat::~InputFormat()
{
}
string InputFormat::name() const
{
return valid_string(sr_input_id_get(_structure));
}
string InputFormat::description() const
{
return valid_string(sr_input_description_get(_structure));
}
vector<string> InputFormat::extensions() const
{
vector<string> exts;
for (const char *const *e = sr_input_extensions_get(_structure);
e && *e; e++)
exts.push_back(*e);
return exts;
}
map<string, shared_ptr<Option>> InputFormat::options()
{
map<string, shared_ptr<Option>> result;
if (const struct sr_option **options = sr_input_options_get(_structure)) {
shared_ptr<const struct sr_option *> option_array
{options, &sr_input_options_free};
for (int i = 0; options[i]; i++) {
shared_ptr<Option> opt {
new Option{options[i], option_array},
default_delete<Option>{}};
result.emplace(opt->id(), move(opt));
}
}
return result;
}
shared_ptr<Input> InputFormat::create_input(
map<string, Glib::VariantBase> options)
{
auto input = sr_input_new(_structure, map_to_hash_variant(options));
if (!input)
throw Error(SR_ERR_ARG);
return shared_ptr<Input>{new Input{_parent, input}, default_delete<Input>{}};
}
Input::Input(shared_ptr<Context> context, const struct sr_input *structure) :
_structure(structure),
_context(move(context))
{
}
shared_ptr<InputDevice> Input::device()
{
if (!_device) {
auto sdi = sr_input_dev_inst_get(_structure);
if (!sdi)
throw Error(SR_ERR_NA);
_device.reset(new InputDevice{shared_from_this(), sdi});
}
return _device->share_owned_by(shared_from_this());
}
void Input::send(void *data, size_t length)
{
auto gstr = g_string_new_len(static_cast<char *>(data), length);
auto ret = sr_input_send(_structure, gstr);
g_string_free(gstr, true);
check(ret);
}
void Input::end()
{
check(sr_input_end(_structure));
}
void Input::reset()
{
check(sr_input_reset(_structure));
}
Input::~Input()
{
sr_input_free(_structure);
}
InputDevice::InputDevice(shared_ptr<Input> input,
struct sr_dev_inst *structure) :
Device(structure),
_input(move(input))
{
}
InputDevice::~InputDevice()
{
}
shared_ptr<Device> InputDevice::get_shared_from_this()
{
return static_pointer_cast<Device>(shared_from_this());
}
Option::Option(const struct sr_option *structure,
shared_ptr<const struct sr_option *> structure_array) :
_structure(structure),
_structure_array(move(structure_array))
{
}
Option::~Option()
{
}
string Option::id() const
{
return valid_string(_structure->id);
}
string Option::name() const
{
return valid_string(_structure->name);
}
string Option::description() const
{
return valid_string(_structure->desc);
}
Glib::VariantBase Option::default_value() const
{
return Glib::VariantBase(_structure->def, true);
}
vector<Glib::VariantBase> Option::values() const
{
vector<Glib::VariantBase> result;
for (auto l = _structure->values; l; l = l->next) {
auto *const var = static_cast<GVariant *>(l->data);
result.push_back(Glib::VariantBase(var, true));
}
return result;
}
Glib::VariantBase Option::parse_string(string value)
{
enum sr_datatype dt;
Glib::VariantBase dflt = default_value();
GVariant *tmpl = dflt.gobj();
if (g_variant_is_of_type(tmpl, G_VARIANT_TYPE_UINT64)) {
dt = SR_T_UINT64;
} else if (g_variant_is_of_type(tmpl, G_VARIANT_TYPE_STRING)) {
dt = SR_T_STRING;
} else if (g_variant_is_of_type(tmpl, G_VARIANT_TYPE_BOOLEAN)) {
dt = SR_T_BOOL;
} else if (g_variant_is_of_type(tmpl, G_VARIANT_TYPE_DOUBLE)) {
dt = SR_T_FLOAT;
} else if (g_variant_is_of_type(tmpl, G_VARIANT_TYPE_INT32)) {
dt = SR_T_INT32;
} else {
throw Error(SR_ERR_BUG);
}
return ConfigKey::parse_string(value, dt);
}
OutputFormat::OutputFormat(const struct sr_output_module *structure) :
_structure(structure)
{
}
OutputFormat::~OutputFormat()
{
}
string OutputFormat::name() const
{
return valid_string(sr_output_id_get(_structure));
}
string OutputFormat::description() const
{
return valid_string(sr_output_description_get(_structure));
}
vector<string> OutputFormat::extensions() const
{
vector<string> exts;
for (const char *const *e = sr_output_extensions_get(_structure);
e && *e; e++)
exts.push_back(*e);
return exts;
}
map<string, shared_ptr<Option>> OutputFormat::options()
{
map<string, shared_ptr<Option>> result;
if (const struct sr_option **options = sr_output_options_get(_structure)) {
shared_ptr<const struct sr_option *> option_array
{options, &sr_output_options_free};
for (int i = 0; options[i]; i++) {
shared_ptr<Option> opt {
new Option{options[i], option_array},
default_delete<Option>{}};
result.emplace(opt->id(), move(opt));
}
}
return result;
}
shared_ptr<Output> OutputFormat::create_output(
shared_ptr<Device> device, map<string, Glib::VariantBase> options)
{
return shared_ptr<Output>{
new Output{shared_from_this(), move(device), move(options)},
default_delete<Output>{}};
}
shared_ptr<Output> OutputFormat::create_output(string filename,
shared_ptr<Device> device, map<string, Glib::VariantBase> options)
{
return shared_ptr<Output>{
new Output{move(filename), shared_from_this(), move(device), move(options)},
default_delete<Output>{}};
}
bool OutputFormat::test_flag(const OutputFlag *flag) const
{
return sr_output_test_flag(_structure, flag->id());
}
Output::Output(shared_ptr<OutputFormat> format,
shared_ptr<Device> device, map<string, Glib::VariantBase> options) :
_structure(sr_output_new(format->_structure,
map_to_hash_variant(options), device->_structure, nullptr)),
_format(move(format)),
_device(move(device)),
_options(move(options))
{
}
Output::Output(string filename, shared_ptr<OutputFormat> format,
shared_ptr<Device> device, map<string, Glib::VariantBase> options) :
_structure(sr_output_new(format->_structure,
map_to_hash_variant(options), device->_structure, filename.c_str())),
_format(move(format)),
_device(move(device)),
_options(move(options))
{
}
Output::~Output()
{
check(sr_output_free(_structure));
}
shared_ptr<OutputFormat> Output::format()
{
return _format;
}
string Output::receive(shared_ptr<Packet> packet)
{
GString *out;
check(sr_output_send(_structure, packet->_structure, &out));
if (out) {
auto result = string(out->str, out->str + out->len);
g_string_free(out, true);
return result;
} else {
return string();
}
}
#include <enums.cpp>
}