469 lines
13 KiB
C
469 lines
13 KiB
C
/*
|
|
* This file is part of the libsigrok project.
|
|
*
|
|
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <dirent.h>
|
|
#include <string.h>
|
|
#include <glib.h>
|
|
#include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */
|
|
#include "libsigrok.h"
|
|
#include "libsigrok-internal.h"
|
|
|
|
/** @cond PRIVATE */
|
|
#define LOG_PREFIX "hwdriver"
|
|
/** @endcond */
|
|
|
|
extern SR_PRIV struct sr_dev_driver *drivers_list[];
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* Hardware driver handling in libsigrok.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup grp_driver Hardware drivers
|
|
*
|
|
* Hardware driver handling in libsigrok.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
static struct sr_config_info sr_config_info_data[] = {
|
|
{SR_CONF_CONN, SR_T_STRING, "conn",
|
|
"Connection", NULL},
|
|
{SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
|
|
"Serial communication", NULL},
|
|
{SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
|
|
"Sample rate", NULL},
|
|
{SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
|
|
"Pre-trigger capture ratio", NULL},
|
|
{SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
|
|
"Pattern", NULL},
|
|
{SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
|
|
"Trigger matches", NULL},
|
|
{SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
|
|
"External clock mode", NULL},
|
|
{SR_CONF_SWAP, SR_T_BOOL, "swap",
|
|
"Swap channel order", NULL},
|
|
{SR_CONF_RLE, SR_T_BOOL, "rle",
|
|
"Run Length Encoding", NULL},
|
|
{SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
|
|
"Trigger slope", NULL},
|
|
{SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
|
|
"Trigger source", NULL},
|
|
{SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
|
|
"Horizontal trigger position", NULL},
|
|
{SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
|
|
"Buffer size", NULL},
|
|
{SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
|
|
"Time base", NULL},
|
|
{SR_CONF_FILTER, SR_T_STRING, "filter",
|
|
"Filter targets", NULL},
|
|
{SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
|
|
"Volts/div", NULL},
|
|
{SR_CONF_COUPLING, SR_T_STRING, "coupling",
|
|
"Coupling", NULL},
|
|
{SR_CONF_DATALOG, SR_T_BOOL, "datalog",
|
|
"Datalog", NULL},
|
|
{SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
|
|
"Sound pressure level frequency weighting", NULL},
|
|
{SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
|
|
"Sound pressure level time weighting", NULL},
|
|
{SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
|
|
"Hold max", NULL},
|
|
{SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
|
|
"Hold min", NULL},
|
|
{SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
|
|
"Sound pressure level measurement range", NULL},
|
|
{SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
|
|
"Voltage threshold", NULL },
|
|
{SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
|
|
"Power off", NULL},
|
|
{SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
|
|
"Data source", NULL},
|
|
{SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
|
|
"Number of logic channels", NULL},
|
|
{SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
|
|
"Number of analog channels", NULL},
|
|
{SR_CONF_OUTPUT_VOLTAGE, SR_T_FLOAT, "output_voltage",
|
|
"Current output voltage", NULL},
|
|
{SR_CONF_OUTPUT_VOLTAGE_MAX, SR_T_FLOAT, "output_voltage_max",
|
|
"Maximum output voltage", NULL},
|
|
{SR_CONF_OUTPUT_CURRENT, SR_T_FLOAT, "output_current",
|
|
"Current output current", NULL},
|
|
{SR_CONF_OUTPUT_CURRENT_MAX, SR_T_FLOAT, "output_current_max",
|
|
"Maximum output current", NULL},
|
|
{SR_CONF_OUTPUT_ENABLED, SR_T_BOOL, "output_enabled",
|
|
"Output enabled", NULL},
|
|
{SR_CONF_OUTPUT_CHANNEL, SR_T_STRING, "output_channel",
|
|
"Output channel modes", NULL},
|
|
{SR_CONF_OVER_VOLTAGE_PROTECTION, SR_T_BOOL, "ovp",
|
|
"Over-voltage protection", NULL},
|
|
{SR_CONF_OVER_CURRENT_PROTECTION, SR_T_BOOL, "ocp",
|
|
"Over-current protection", NULL},
|
|
{SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
|
|
"Sample limit", NULL},
|
|
{SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
|
|
"Clock edge", NULL},
|
|
{0, 0, NULL, NULL, NULL},
|
|
};
|
|
|
|
/**
|
|
* Return the list of supported hardware drivers.
|
|
*
|
|
* @return Pointer to the NULL-terminated list of hardware driver pointers.
|
|
*
|
|
* @since 0.1.0
|
|
*/
|
|
SR_API struct sr_dev_driver **sr_driver_list(void)
|
|
{
|
|
|
|
return drivers_list;
|
|
}
|
|
|
|
/**
|
|
* Initialize a hardware driver.
|
|
*
|
|
* This usually involves memory allocations and variable initializations
|
|
* within the driver, but _not_ scanning for attached devices.
|
|
* The API call sr_driver_scan() is used for that.
|
|
*
|
|
* @param ctx A libsigrok context object allocated by a previous call to
|
|
* sr_init(). Must not be NULL.
|
|
* @param driver The driver to initialize. This must be a pointer to one of
|
|
* the entries returned by sr_driver_list(). Must not be NULL.
|
|
*
|
|
* @retval SR_OK Success
|
|
* @retval SR_ERR_ARG Invalid parameter(s).
|
|
* @retval SR_ERR_BUG Internal errors.
|
|
* @retval other Another negative error code upon other errors.
|
|
*
|
|
* @since 0.2.0
|
|
*/
|
|
SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
|
|
{
|
|
int ret;
|
|
|
|
if (!ctx) {
|
|
sr_err("Invalid libsigrok context, can't initialize.");
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
if (!driver) {
|
|
sr_err("Invalid driver, can't initialize.");
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
sr_spew("Initializing driver '%s'.", driver->name);
|
|
if ((ret = driver->init(ctx)) < 0)
|
|
sr_err("Failed to initialize the driver: %d.", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Tell a hardware driver to scan for devices.
|
|
*
|
|
* In addition to the detection, the devices that are found are also
|
|
* initialized automatically. On some devices, this involves a firmware upload,
|
|
* or other such measures.
|
|
*
|
|
* The order in which the system is scanned for devices is not specified. The
|
|
* caller should not assume or rely on any specific order.
|
|
*
|
|
* Before calling sr_driver_scan(), the user must have previously initialized
|
|
* the driver by calling sr_driver_init().
|
|
*
|
|
* @param driver The driver that should scan. This must be a pointer to one of
|
|
* the entries returned by sr_driver_list(). Must not be NULL.
|
|
* @param options A list of 'struct sr_hwopt' options to pass to the driver's
|
|
* scanner. Can be NULL/empty.
|
|
*
|
|
* @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
|
|
* found (or errors were encountered). This list must be freed by the
|
|
* caller using g_slist_free(), but without freeing the data pointed
|
|
* to in the list.
|
|
*
|
|
* @since 0.2.0
|
|
*/
|
|
SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
|
|
{
|
|
GSList *l;
|
|
|
|
if (!driver) {
|
|
sr_err("Invalid driver, can't scan for devices.");
|
|
return NULL;
|
|
}
|
|
|
|
if (!driver->priv) {
|
|
sr_err("Driver not initialized, can't scan for devices.");
|
|
return NULL;
|
|
}
|
|
|
|
l = driver->scan(options);
|
|
|
|
sr_spew("Scan of '%s' found %d devices.", driver->name,
|
|
g_slist_length(l));
|
|
|
|
return l;
|
|
}
|
|
|
|
/** Call driver cleanup function for all drivers.
|
|
* @private */
|
|
SR_PRIV void sr_hw_cleanup_all(void)
|
|
{
|
|
int i;
|
|
struct sr_dev_driver **drivers;
|
|
|
|
drivers = sr_driver_list();
|
|
for (i = 0; drivers[i]; i++) {
|
|
if (drivers[i]->cleanup)
|
|
drivers[i]->cleanup();
|
|
}
|
|
}
|
|
|
|
/** Allocate struct sr_config.
|
|
* A floating reference can be passed in for data.
|
|
* @private
|
|
*/
|
|
SR_PRIV struct sr_config *sr_config_new(int key, GVariant *data)
|
|
{
|
|
struct sr_config *src;
|
|
|
|
if (!(src = g_try_malloc(sizeof(struct sr_config))))
|
|
return NULL;
|
|
src->key = key;
|
|
src->data = g_variant_ref_sink(data);
|
|
|
|
return src;
|
|
}
|
|
|
|
/** Free struct sr_config.
|
|
* @private
|
|
*/
|
|
SR_PRIV void sr_config_free(struct sr_config *src)
|
|
{
|
|
|
|
if (!src || !src->data) {
|
|
sr_err("%s: invalid data!", __func__);
|
|
return;
|
|
}
|
|
|
|
g_variant_unref(src->data);
|
|
g_free(src);
|
|
|
|
}
|
|
|
|
/**
|
|
* Query value of a configuration key at the given driver or device instance.
|
|
*
|
|
* @param[in] driver The sr_dev_driver struct to query.
|
|
* @param[in] sdi (optional) If the key is specific to a device, this must
|
|
* contain a pointer to the struct sr_dev_inst to be checked.
|
|
* Otherwise it must be NULL.
|
|
* @param[in] cg The channel group on the device for which to list the
|
|
* values, or NULL.
|
|
* @param[in] key The configuration key (SR_CONF_*).
|
|
* @param[in,out] data Pointer to a GVariant where the value will be stored.
|
|
* Must not be NULL. The caller is given ownership of the GVariant
|
|
* and must thus decrease the refcount after use. However if
|
|
* this function returns an error code, the field should be
|
|
* considered unused, and should not be unreferenced.
|
|
*
|
|
* @retval SR_OK Success.
|
|
* @retval SR_ERR Error.
|
|
* @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
|
|
* interpreted as an error by the caller; merely as an indication
|
|
* that it's not applicable.
|
|
*
|
|
* @since 0.3.0
|
|
*/
|
|
SR_API int sr_config_get(const struct sr_dev_driver *driver,
|
|
const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg,
|
|
int key, GVariant **data)
|
|
{
|
|
int ret;
|
|
|
|
if (!driver || !data)
|
|
return SR_ERR;
|
|
|
|
if (!driver->config_get)
|
|
return SR_ERR_ARG;
|
|
|
|
if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
|
|
/* Got a floating reference from the driver. Sink it here,
|
|
* caller will need to unref when done with it. */
|
|
g_variant_ref_sink(*data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Set value of a configuration key in a device instance.
|
|
*
|
|
* @param[in] sdi The device instance.
|
|
* @param[in] cg The channel group on the device for which to list the
|
|
* values, or NULL.
|
|
* @param[in] key The configuration key (SR_CONF_*).
|
|
* @param data The new value for the key, as a GVariant with GVariantType
|
|
* appropriate to that key. A floating reference can be passed
|
|
* in; its refcount will be sunk and unreferenced after use.
|
|
*
|
|
* @retval SR_OK Success.
|
|
* @retval SR_ERR Error.
|
|
* @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
|
|
* interpreted as an error by the caller; merely as an indication
|
|
* that it's not applicable.
|
|
*
|
|
* @since 0.3.0
|
|
*/
|
|
SR_API int sr_config_set(const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg,
|
|
int key, GVariant *data)
|
|
{
|
|
int ret;
|
|
|
|
g_variant_ref_sink(data);
|
|
|
|
if (!sdi || !sdi->driver || !data)
|
|
ret = SR_ERR;
|
|
else if (!sdi->driver->config_set)
|
|
ret = SR_ERR_ARG;
|
|
else
|
|
ret = sdi->driver->config_set(key, data, sdi, cg);
|
|
|
|
g_variant_unref(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Apply configuration settings to the device hardware.
|
|
*
|
|
* @param sdi The device instance.
|
|
*
|
|
* @return SR_OK upon success or SR_ERR in case of error.
|
|
*
|
|
* @since 0.3.0
|
|
*/
|
|
SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
|
|
{
|
|
int ret;
|
|
|
|
if (!sdi || !sdi->driver)
|
|
ret = SR_ERR;
|
|
else if (!sdi->driver->config_commit)
|
|
ret = SR_OK;
|
|
else
|
|
ret = sdi->driver->config_commit(sdi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* List all possible values for a configuration key.
|
|
*
|
|
* @param[in] driver The sr_dev_driver struct to query.
|
|
* @param[in] sdi (optional) If the key is specific to a device, this must
|
|
* contain a pointer to the struct sr_dev_inst to be checked.
|
|
* @param[in] cg The channel group on the device for which to list the
|
|
* values, or NULL.
|
|
* @param[in] key The configuration key (SR_CONF_*).
|
|
* @param[in,out] data A pointer to a GVariant where the list will be stored.
|
|
* The caller is given ownership of the GVariant and must thus
|
|
* unref the GVariant after use. However if this function
|
|
* returns an error code, the field should be considered
|
|
* unused, and should not be unreferenced.
|
|
*
|
|
* @retval SR_OK Success.
|
|
* @retval SR_ERR Error.
|
|
* @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
|
|
* interpreted as an error by the caller; merely as an indication
|
|
* that it's not applicable.
|
|
*
|
|
* @since 0.3.0
|
|
*/
|
|
SR_API int sr_config_list(const struct sr_dev_driver *driver,
|
|
const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg,
|
|
int key, GVariant **data)
|
|
{
|
|
int ret;
|
|
|
|
if (!driver || !data)
|
|
ret = SR_ERR;
|
|
else if (!driver->config_list)
|
|
ret = SR_ERR_ARG;
|
|
else if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK)
|
|
g_variant_ref_sink(*data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Get information about a configuration key, by key.
|
|
*
|
|
* @param[in] key The configuration key.
|
|
*
|
|
* @return A pointer to a struct sr_config_info, or NULL if the key
|
|
* was not found.
|
|
*
|
|
* @since 0.2.0
|
|
*/
|
|
SR_API const struct sr_config_info *sr_config_info_get(int key)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; sr_config_info_data[i].key; i++) {
|
|
if (sr_config_info_data[i].key == key)
|
|
return &sr_config_info_data[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Get information about a configuration key, by name.
|
|
*
|
|
* @param[in] optname The configuration key.
|
|
*
|
|
* @return A pointer to a struct sr_config_info, or NULL if the key
|
|
* was not found.
|
|
*
|
|
* @since 0.2.0
|
|
*/
|
|
SR_API const struct sr_config_info *sr_config_info_name_get(const char *optname)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; sr_config_info_data[i].key; i++) {
|
|
if (!strcmp(sr_config_info_data[i].id, optname))
|
|
return &sr_config_info_data[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/** @} */
|