libsigrok/output/output_analog.c

468 lines
11 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2011 Håvard Espeland <gus@ping.uio.no>
* Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include <sigrok.h>
#include "config.h"
#define DEFAULT_BPL_BITS 64
#define DEFAULT_BPL_HEX 192
#define DEFAULT_BPL_ASCII 74
enum outputmode {
MODE_BITS = 1,
MODE_HEX,
MODE_ASCII,
};
struct context {
unsigned int num_enabled_probes;
int samples_per_line;
unsigned int unitsize;
int line_offset;
int linebuf_len;
char *probelist[65];
char *linebuf;
int spl_cnt;
uint8_t *linevalues;
char *header;
int mark_trigger;
// struct analog_sample *prevsample;
enum outputmode mode;
};
static void flush_linebufs(struct context *ctx, char *outbuf)
{
static int max_probename_len = 0;
int len, i;
if (ctx->linebuf[0] == 0)
return;
if (max_probename_len == 0) {
/* First time through... */
for (i = 0; ctx->probelist[i]; i++) {
len = strlen(ctx->probelist[i]);
if (len > max_probename_len)
max_probename_len = len;
}
}
for (i = 0; ctx->probelist[i]; i++) {
sprintf(outbuf + strlen(outbuf), "%*s:%s\n", max_probename_len,
ctx->probelist[i], ctx->linebuf + i * ctx->linebuf_len);
}
/* Mark trigger with a ^ character. */
if (ctx->mark_trigger != -1)
{
int space_offset = ctx->mark_trigger / 8;
if (ctx->mode == MODE_ASCII)
space_offset = 0;
sprintf(outbuf + strlen(outbuf), "T:%*s^\n",
ctx->mark_trigger + space_offset, "");
}
memset(ctx->linebuf, 0, i * ctx->linebuf_len);
}
static int init(struct output *o, int default_spl, enum outputmode mode)
{
struct context *ctx;
struct probe *probe;
GSList *l;
uint64_t samplerate;
int num_probes;
char *samplerate_s;
if (!(ctx = calloc(1, sizeof(struct context))))
return SIGROK_ERR_MALLOC;
o->internal = ctx;
ctx->num_enabled_probes = 0;
for (l = o->device->probes; l; l = l->next) {
probe = l->data;
if (!probe->enabled)
continue;
ctx->probelist[ctx->num_enabled_probes++] = probe->name;
}
ctx->probelist[ctx->num_enabled_probes] = 0;
ctx->unitsize = sizeof(struct analog_sample) +
(ctx->num_enabled_probes * sizeof(struct analog_probe));
ctx->line_offset = 0;
ctx->spl_cnt = 0;
ctx->mark_trigger = -1;
ctx->mode = mode;
if (o->param && o->param[0]) {
ctx->samples_per_line = strtoul(o->param, NULL, 10);
if (ctx->samples_per_line < 1)
return SIGROK_ERR;
} else
ctx->samples_per_line = default_spl;
if (!(ctx->header = malloc(512))) {
free(ctx);
return SIGROK_ERR_MALLOC;
}
snprintf(ctx->header, 511, "%s\n", PACKAGE_STRING);
num_probes = g_slist_length(o->device->probes);
if (o->device->plugin) {
samplerate = *((uint64_t *) o->device->plugin->get_device_info(
o->device->plugin_index, DI_CUR_SAMPLERATE));
if (!(samplerate_s = sigrok_samplerate_string(samplerate))) {
free(ctx->header);
free(ctx);
return SIGROK_ERR;
}
snprintf(ctx->header + strlen(ctx->header),
511 - strlen(ctx->header),
"Acquisition with %d/%d probes at %s\n",
ctx->num_enabled_probes, num_probes, samplerate_s);
free(samplerate_s);
}
ctx->linebuf_len = ctx->samples_per_line * 2 + 4;
if (!(ctx->linebuf = calloc(1, num_probes * ctx->linebuf_len))) {
free(ctx->header);
free(ctx);
return SIGROK_ERR_MALLOC;
}
if (!(ctx->linevalues = calloc(1, num_probes))) {
free(ctx->header);
free(ctx);
return SIGROK_ERR_MALLOC;
}
return SIGROK_OK;
}
static int event(struct output *o, int event_type, char **data_out,
uint64_t *length_out)
{
struct context *ctx;
int outsize;
char *outbuf;
ctx = o->internal;
switch (event_type) {
case DF_TRIGGER:
ctx->mark_trigger = ctx->spl_cnt;
*data_out = NULL;
*length_out = 0;
break;
case DF_END:
outsize = ctx->num_enabled_probes
* (ctx->samples_per_line + 20) + 512;
if (!(outbuf = calloc(1, outsize)))
return SIGROK_ERR_MALLOC;
flush_linebufs(ctx, outbuf);
*data_out = outbuf;
*length_out = strlen(outbuf);
free(o->internal);
o->internal = NULL;
break;
default:
*data_out = NULL;
*length_out = 0;
break;
}
return SIGROK_OK;
}
static int init_bits(struct output *o)
{
return init(o, DEFAULT_BPL_BITS, MODE_BITS);
}
static int data_bits(struct output *o, char *data_in, uint64_t length_in,
char **data_out, uint64_t *length_out)
{
struct context *ctx;
unsigned int outsize, offset, p;
int max_linelen;
struct analog_sample *sample;
char *outbuf, c;
ctx = o->internal;
max_linelen = MAX_PROBENAME_LEN + 3 + ctx->samples_per_line
+ ctx->samples_per_line / 8;
/*
* Calculate space needed for probes. Set aside 512 bytes for
* extra output, e.g. trigger.
*/
outsize = 512 + (1 + (length_in / ctx->unitsize) / ctx->samples_per_line)
* (ctx->num_enabled_probes * max_linelen);
if (!(outbuf = calloc(1, outsize + 1)))
return SIGROK_ERR_MALLOC;
outbuf[0] = '\0';
if (ctx->header) {
/* The header is still here, this must be the first packet. */
strncpy(outbuf, ctx->header, outsize);
free(ctx->header);
ctx->header = NULL;
/* Ensure first transition. */
// memcpy(&ctx->prevsample, data_in, ctx->unitsize);
// ctx->prevsample = ~ctx->prevsample;
}
if (length_in >= ctx->unitsize) {
for (offset = 0; offset <= length_in - ctx->unitsize;
offset += ctx->unitsize) {
sample = (struct analog_sample *) (data_in + offset);
for (p = 0; p < ctx->num_enabled_probes; p++) {
int val = sample->probes[p].val;
int res = sample->probes[p].res;
if (res == 1)
c = '0' + (val & ((1 << res) - 1));
else
/*
* Scale analog resolution down so it
* fits 25 letters
*/
c = 'A' + (((val & ((1 << res) - 1)) /
(res * res)) / 10);
ctx->linebuf[p * ctx->linebuf_len +
ctx->line_offset] = c;
}
ctx->line_offset++;
ctx->spl_cnt++;
/* Add a space every 8th bit. */
if ((ctx->spl_cnt & 7) == 0) {
for (p = 0; p < ctx->num_enabled_probes; p++)
ctx->linebuf[p * ctx->linebuf_len +
ctx->line_offset] = ' ';
ctx->line_offset++;
}
/* End of line. */
if (ctx->spl_cnt >= ctx->samples_per_line) {
flush_linebufs(ctx, outbuf);
ctx->line_offset = ctx->spl_cnt = 0;
ctx->mark_trigger = -1;
}
}
} else {
g_message("short buffer (length_in=%" PRIu64 ")", length_in);
}
*data_out = outbuf;
*length_out = strlen(outbuf);
return SIGROK_OK;
}
#if 0
static int init_hex(struct output *o)
{
return init(o, DEFAULT_BPL_HEX, MODE_HEX);
}
static int data_hex(struct output *o, char *data_in, uint64_t length_in,
char **data_out, uint64_t *length_out)
{
struct context *ctx;
unsigned int outsize, offset, p;
int max_linelen;
uint64_t sample;
char *outbuf;
ctx = o->internal;
max_linelen = MAX_PROBENAME_LEN + 3 + ctx->samples_per_line
+ ctx->samples_per_line / 2;
outsize = length_in / ctx->unitsize * ctx->num_enabled_probes
/ ctx->samples_per_line * max_linelen + 512;
if (!(outbuf = calloc(1, outsize + 1)))
return SIGROK_ERR_MALLOC;
outbuf[0] = '\0';
if (ctx->header) {
/* The header is still here, this must be the first packet. */
strncpy(outbuf, ctx->header, outsize);
free(ctx->header);
ctx->header = NULL;
}
ctx->line_offset = 0;
for (offset = 0; offset <= length_in - ctx->unitsize;
offset += ctx->unitsize) {
memcpy(&sample, data_in + offset, ctx->unitsize);
for (p = 0; p < ctx->num_enabled_probes; p++) {
ctx->linevalues[p] <<= 1;
if (sample & ((uint64_t) 1 << p))
ctx->linevalues[p] |= 1;
sprintf(ctx->linebuf + (p * ctx->linebuf_len) +
ctx->line_offset, "%.2x", ctx->linevalues[p]);
}
ctx->spl_cnt++;
/* Add a space after every complete hex byte. */
if ((ctx->spl_cnt & 7) == 0) {
for (p = 0; p < ctx->num_enabled_probes; p++)
ctx->linebuf[p * ctx->linebuf_len +
ctx->line_offset + 2] = ' ';
ctx->line_offset += 3;
}
/* End of line. */
if (ctx->spl_cnt >= ctx->samples_per_line) {
flush_linebufs(ctx, outbuf);
ctx->line_offset = ctx->spl_cnt = 0;
}
}
*data_out = outbuf;
*length_out = strlen(outbuf);
return SIGROK_OK;
}
static int init_ascii(struct output *o)
{
return init(o, DEFAULT_BPL_ASCII, MODE_ASCII);
}
static int data_ascii(struct output *o, char *data_in, uint64_t length_in,
char **data_out, uint64_t *length_out)
{
struct context *ctx;
unsigned int outsize, offset, p;
int max_linelen;
uint64_t sample;
char *outbuf;
ctx = o->internal;
max_linelen = MAX_PROBENAME_LEN + 3 + ctx->samples_per_line
+ ctx->samples_per_line / 8;
/*
* Calculate space needed for probes. Set aside 512 bytes for
* extra output, e.g. trigger.
*/
outsize = 512 + (1 + (length_in / ctx->unitsize) / ctx->samples_per_line)
* (ctx->num_enabled_probes * max_linelen);
if (!(outbuf = calloc(1, outsize + 1)))
return SIGROK_ERR_MALLOC;
outbuf[0] = '\0';
if (ctx->header) {
/* The header is still here, this must be the first packet. */
strncpy(outbuf, ctx->header, outsize);
free(ctx->header);
ctx->header = NULL;
}
if (length_in >= ctx->unitsize) {
for (offset = 0; offset <= length_in - ctx->unitsize;
offset += ctx->unitsize) {
memcpy(&sample, data_in + offset, ctx->unitsize);
char tmpval[ctx->num_enabled_probes];
for (p = 0; p < ctx->num_enabled_probes; p++) {
uint64_t curbit = (sample & ((uint64_t) 1 << p));
uint64_t prevbit = (ctx->prevsample &
((uint64_t) 1 << p));
if (curbit < prevbit && ctx->line_offset > 0) {
ctx->linebuf[p * ctx->linebuf_len +
ctx->line_offset-1] = '\\';
}
if (curbit > prevbit) {
tmpval[p] = '/';
} else {
if (curbit)
tmpval[p] = '"';
else
tmpval[p] = '.';
}
}
/* End of line. */
if (ctx->spl_cnt >= ctx->samples_per_line) {
flush_linebufs(ctx, outbuf);
ctx->line_offset = ctx->spl_cnt = 0;
ctx->mark_trigger = -1;
}
for (p = 0; p < ctx->num_enabled_probes; p++) {
ctx->linebuf[p * ctx->linebuf_len +
ctx->line_offset] = tmpval[p];
}
ctx->line_offset++;
ctx->spl_cnt++;
ctx->prevsample = sample;
}
} else {
g_message("short buffer (length_in=%" PRIu64 ")", length_in);
}
*data_out = outbuf;
*length_out = strlen(outbuf);
return SIGROK_OK;
}
#endif
struct output_format output_analog_bits = {
"analog_bits",
"Bits (takes argument, default 64)",
DF_ANALOG,
init_bits,
data_bits,
event,
};
#if 0
struct output_format output_analog_hex = {
"analog_hex",
"Hexadecimal (takes argument, default 192)",
DF_ANALOG,
init_hex,
data_hex,
event,
};
struct output_format output_analog_ascii = {
"analog_ascii",
"ASCII (takes argument, default 74)",
DF_ANALOG,
init_ascii,
data_ascii,
event,
};
#endif