// @flow import { getLocalParticipant } from '../base/participants'; import { extractFqnFromPath } from '../dynamic-branding'; import { DETECT_FACE, FACE_BOX_EVENT_TYPE, SEND_IMAGE_INTERVAL_MS } from './constants'; import logger from './logger'; let canvas; let context; if (typeof OffscreenCanvas === 'undefined') { canvas = document.createElement('canvas'); context = canvas.getContext('2d'); } /** * Sends the face expression with its duration to all the other participants. * * @param {Object} conference - The current conference. * @param {string} faceExpression - Face expression to be sent. * @param {number} duration - The duration of the face expression in seconds. * @returns {void} */ export function sendFaceExpressionToParticipants( conference: Object, faceExpression: string, duration: number ): void { try { conference.sendEndpointMessage('', { type: 'face_landmark', faceExpression, duration }); } catch (err) { logger.warn('Could not broadcast the face expression to the other participants', err); } } /** * Sends the face box to all the other participants. * * @param {Object} conference - The current conference. * @param {Object} faceBox - Face box to be sent. * @returns {void} */ export function sendFaceBoxToParticipants( conference: Object, faceBox: Object ): void { try { conference.sendEndpointMessage('', { type: FACE_BOX_EVENT_TYPE, faceBox }); } catch (err) { logger.warn('Could not broadcast the face box to the other participants', err); } } /** * Sends the face expression with its duration to xmpp server. * * @param {Object} conference - The current conference. * @param {string} faceExpression - Face expression to be sent. * @param {number} duration - The duration of the face expression in seconds. * @returns {void} */ export function sendFaceExpressionToServer( conference: Object, faceExpression: string, duration: number ): void { try { conference.sendFaceLandmarks({ faceExpression, duration }); } catch (err) { logger.warn('Could not send the face expression to xmpp server', err); } } /** * Sends face expression to backend. * * @param {Object} state - Redux state. * @returns {boolean} - True if sent, false otherwise. */ export async function sendFaceExpressionsWebhook(state: Object) { const { webhookProxyUrl: url } = state['features/base/config']; const { conference } = state['features/base/conference']; const { jwt } = state['features/base/jwt']; const { connection } = state['features/base/connection']; const jid = connection.getJid(); const localParticipant = getLocalParticipant(state); const { faceExpressionsBuffer } = state['features/face-landmarks']; if (faceExpressionsBuffer.length === 0) { return false; } const headers = { ...jwt ? { 'Authorization': `Bearer ${jwt}` } : {}, 'Content-Type': 'application/json' }; const reqBody = { meetingFqn: extractFqnFromPath(), sessionId: conference.sessionId, submitted: Date.now(), emotions: faceExpressionsBuffer, participantId: localParticipant.jwtId, participantName: localParticipant.name, participantJid: jid }; if (url) { try { const res = await fetch(`${url}/emotions`, { method: 'POST', headers, body: JSON.stringify(reqBody) }); if (res.ok) { return true; } logger.error('Status error:', res.status); } catch (err) { logger.error('Could not send request', err); } } return false; } /** * Sends the image data a canvas from the track in the image capture to the face recognition worker. * * @param {Worker} worker - Face recognition worker. * @param {Object} imageCapture - Image capture that contains the current track. * @param {number} threshold - Movement threshold as percentage for sharing face coordinates. * @returns {Promise} */ export async function sendDataToWorker( worker: Worker, imageCapture: Object, threshold: number = 10 ): Promise { if (imageCapture === null || imageCapture === undefined) { return; } let imageBitmap; let image; try { imageBitmap = await imageCapture.grabFrame(); } catch (err) { logger.warn(err); return; } if (typeof OffscreenCanvas === 'undefined') { canvas.width = imageBitmap.width; canvas.height = imageBitmap.height; context.drawImage(imageBitmap, 0, 0); image = context.getImageData(0, 0, imageBitmap.width, imageBitmap.height); } else { image = imageBitmap; } worker.postMessage({ type: DETECT_FACE, image, threshold }); imageBitmap.close(); } /** * Gets face box for a participant id. * * @param {string} id - The participant id. * @param {Object} state - The redux state. * @returns {Object} */ function getFaceBoxForId(id: string, state: Object) { return state['features/face-landmarks'].faceBoxes[id]; } /** * Gets the video object position for a participant id. * * @param {Object} state - The redux state. * @param {string} id - The participant id. * @returns {string} - CSS object-position in the shape of '{horizontalPercentage}% {verticalPercentage}%'. */ export function getVideoObjectPosition(state: Object, id: string) { const faceBox = getFaceBoxForId(id, state); if (faceBox) { const { right, width } = faceBox; return `${right - (width / 2)}% 50%`; } return '50% 50%'; } /** * Gets the video object position for a participant id. * * @param {Object} state - The redux state. * @returns {number} - Number of miliseconds for doing face detection. */ export function getDetectionInterval(state: Object) { const { faceLandmarks } = state['features/base/config']; return Math.max(faceLandmarks?.captureInterval || SEND_IMAGE_INTERVAL_MS); }