// @flow import { getLocalVideoTrack } from '../base/tracks'; import 'image-capture'; import './createImageBitmap'; import { ADD_FACIAL_EXPRESSION, SET_DETECTION_TIME_INTERVAL, START_FACIAL_RECOGNITION, STOP_FACIAL_RECOGNITION } from './actionTypes'; import { sendDataToWorker } from './functions'; import logger from './logger'; /** * Time used for detection interval when facial expressions worker uses webgl backend. */ const WEBGL_TIME_INTERVAL = 1000; /** * Time used for detection interval when facial expression worker uses cpu backend. */ const CPU_TIME_INTERVAL = 6000; /** * Object containing a image capture of the local track. */ let imageCapture; /** * Object where the facial expression worker is stored. */ let worker; /** * The last facial expression received from the worker. */ let lastFacialExpression; /** * How many duplicate consecutive expression occurred. * If a expression that is not the same as the last one it is reset to 0. */ let duplicateConsecutiveExpressions = 0; /** * Loads the worker that predicts the facial expression. * * @returns {void} */ export function loadWorker() { return function(dispatch: Function) { if (!window.Worker) { logger.warn('Browser does not support web workers'); return; } worker = new Worker('libs/facial-expressions-worker.min.js', { name: 'Facial Expression Worker' }); worker.onmessage = function(e: Object) { const { type, value } = e.data; // receives a message indicating what type of backend tfjs decided to use. // it is received after as a response to the first message sent to the worker. if (type === 'tf-backend' && value) { let detectionTimeInterval = -1; if (value === 'webgl') { detectionTimeInterval = WEBGL_TIME_INTERVAL; } else if (value === 'cpu') { detectionTimeInterval = CPU_TIME_INTERVAL; } dispatch(setDetectionTimeInterval(detectionTimeInterval)); } // receives a message with the predicted facial expression. if (type === 'facial-expression') { sendDataToWorker(worker, imageCapture); if (!value) { return; } if (value === lastFacialExpression) { duplicateConsecutiveExpressions++; } else { lastFacialExpression && dispatch(addFacialExpression(lastFacialExpression, duplicateConsecutiveExpressions + 1)); lastFacialExpression = value; duplicateConsecutiveExpressions = 0; } } }; }; } /** * Starts the recognition and detection of face expressions. * * @param {Object} stream - Video stream. * @returns {Function} */ export function startFacialRecognition() { return async function(dispatch: Function, getState: Function) { if (worker === undefined || worker === null) { return; } const state = getState(); const { recognitionActive } = state['features/facial-recognition']; if (recognitionActive) { return; } const localVideoTrack = getLocalVideoTrack(state['features/base/tracks']); if (localVideoTrack === undefined) { return; } const stream = localVideoTrack.jitsiTrack.getOriginalStream(); if (stream === null) { return; } dispatch({ type: START_FACIAL_RECOGNITION }); logger.log('Start face recognition'); const firstVideoTrack = stream.getVideoTracks()[0]; // $FlowFixMe imageCapture = new ImageCapture(firstVideoTrack); sendDataToWorker(worker, imageCapture); }; } /** * Stops the recognition and detection of face expressions. * * @returns {void} */ export function stopFacialRecognition() { return function(dispatch: Function, getState: Function) { const state = getState(); const { recognitionActive } = state['features/facial-recognition']; if (!recognitionActive) { imageCapture = null; return; } imageCapture = null; worker.postMessage({ id: 'CLEAR_TIMEOUT' }); lastFacialExpression && dispatch(addFacialExpression(lastFacialExpression, duplicateConsecutiveExpressions + 1)); duplicateConsecutiveExpressions = 0; dispatch({ type: STOP_FACIAL_RECOGNITION }); logger.log('Stop face recognition'); }; } /** * Resets the track in the image capture. * * @returns {void} */ export function resetTrack() { return function(dispatch: Function, getState: Function) { const state = getState(); const { jitsiTrack: localVideoTrack } = getLocalVideoTrack(state['features/base/tracks']); const stream = localVideoTrack.getOriginalStream(); const firstVideoTrack = stream.getVideoTracks()[0]; // $FlowFixMe imageCapture = new ImageCapture(firstVideoTrack); }; } /** * Changes the track from the image capture with a given one. * * @param {Object} track - The track that will be in the new image capture. * @returns {void} */ export function changeTrack(track: Object) { const { jitsiTrack } = track; const stream = jitsiTrack.getOriginalStream(); const firstVideoTrack = stream.getVideoTracks()[0]; // $FlowFixMe imageCapture = new ImageCapture(firstVideoTrack); } /** * Adds a new facial expression and its duration. * * @param {string} facialExpression - Facial expression to be added. * @param {number} duration - Duration in seconds of the facial expression. * @returns {Object} */ function addFacialExpression(facialExpression: string, duration: number) { return function(dispatch: Function, getState: Function) { const { detectionTimeInterval } = getState()['features/facial-recognition']; let finalDuration = duration; if (detectionTimeInterval !== -1) { finalDuration *= detectionTimeInterval / 1000; } dispatch({ type: ADD_FACIAL_EXPRESSION, facialExpression, duration: finalDuration }); }; } /** * Sets the time interval for the detection worker post message. * * @param {number} time - The time interval. * @returns {Object} */ function setDetectionTimeInterval(time: number) { return { type: SET_DETECTION_TIME_INTERVAL, time }; }