kicad/eeschema/sim/sim_model_ngspice_data_vbic...

195 lines
35 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright (C) 2023 KiCad Developers, see AUTHORS.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sim/sim_model_ngspice.h>
void NGSPICE_MODEL_INFO_MAP::addVBIC()
{
modelInfos[MODEL_TYPE::VBIC] = { "VBIC", "NPN", "PNP", { "C", "B", "E", "<S>", "<TJ>" }, "Vertical Bipolar Inter-Company Model", {}, {} };
// Model parameters
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "NPN or PNP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnom", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tref", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "27", "n.a." );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rcx", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic coll resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rci", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic coll resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vo", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi drift saturation voltage" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "gamm", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi doping parameter" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "hrcf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "High current RC factor" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbx", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic base resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbi", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic base resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "re", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic emitter resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rs", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic substrate resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbp", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Parasitic base resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "is_", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Transport saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nf", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nr", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Reverse emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "fc", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0.9", "0.9", "Fwd bias depletion capacitance limit" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbeo", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-E overlap capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cje", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-E depletion capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pe", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-E built in potential" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "me", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-E junction grading coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "aje", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-E capacitance smoothing factor" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbco", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-C overlap capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjc", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-C depletion capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qco", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "C", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi charge parameter" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjep", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-C extrinsic zero bias capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pc", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-C built in potential" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "mc", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-C junction grading coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajc", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-C capacitance smoothing factor" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjcp", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias S-C capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ps", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "S-C junction built in potential" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ms", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "S-C junction grading coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajs", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "S-C capacitance smoothing factor" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibei", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-18", "1e-18", "Ideal B-E saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wbe", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of IBEI from Vbei, 1-WBE from Vbex" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nei", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-E emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "iben", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-E saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nen", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-E emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibci", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Ideal B-C saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nci", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-C emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcn", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-C saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncn", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-C emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc1", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 1" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc2", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 2" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isp", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic transport saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wsp", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of ICCP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nfp", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Parasitic fwd emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibeip", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-E saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibenp", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal parasitic B-E saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcip", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-C saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncip", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal parasitic B-C emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcnp", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Nonideal parasitic B-C saturation current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncnp", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Nonideal parasitic B-C emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vef", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward Early voltage" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ver", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse Early voltage" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikf", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward knee current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikr", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse knee current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikp", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic knee current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tf", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal forward transit time" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qtf", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Variation of TF with base-width modulation" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xtf", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Coefficient for bias dependence of TF" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vtf", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Voltage giving VBC dependence of TF" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "itf", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High current dependence of TF" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tr", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal reverse transit time" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "td", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward excess-phase delay time" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "kfn", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "B-E Flicker Noise Coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "afn", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise Exponent" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "bfn", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise 1/f dependence" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xre", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RE" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrb", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RB" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbi", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBI" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrc", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RC" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrci", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCI" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrs", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RS" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xvo", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of VO" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ea", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IS" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaie", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEI" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaic", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCI/IBEIP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eais", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCIP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eane", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEN" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eanc", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCN/IBENP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eans", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCNP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xis", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IS" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xii", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEI,IBCI,IBEIP,IBCIP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xin", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEN,IBCN,IBENP,IBCNP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnf", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of NF" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tavc", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of AVC2" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rth", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Thermal resistance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cth", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vrt", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Punch-through voltage of internal B-C junction" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "art", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Smoothing parameter for reach-through" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ccso", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Fixed C-S capacitance" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qbm", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Select SGP qb formulation" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nkf", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "High current beta rolloff" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xikf", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of IKF" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrcx", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCX" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbx", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBX" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbp", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isrr", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Separate IS for fwd and rev" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xisr", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of ISR" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dear", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Delta activation energy for ISRR" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eap", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Exitivation energy for ISP" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbbe", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E breakdown voltage" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nbbe", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-E breakdown emission coefficient" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibbe", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-06", "1e-06", "B-E breakdown current" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe1", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Linear temperature coefficient of VBBE" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe2", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Quadratic temperature coefficient of VBBE" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnbbe", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient of NBBE" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ebbe", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "exp(-VBBE/(NBBE*Vtv))" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dtemp_", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Locale Temperature difference" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vers", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.2", "1.2", "Revision Version" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vref", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reference Version" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbe_max", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbc_max", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vce_max", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
// Instance parameters
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "m", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvbe", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-E voltage", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvce", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial C-E voltage", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "temp", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "dtemp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Instance delta temperature", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collnode", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basenode", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emitnode", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subsnode", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcxnode", 226, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcinode", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebxnode", 228, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebinode", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebpnode", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emiteinode", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subssinode", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal substrate node", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbe", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-E voltage", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbc", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-C voltage", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Collector current", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ib", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base current", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ie", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "is", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-16", "1e-16", "Substrate current", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gm", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal transconductance dIc/dVbe", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "go", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal output conductance dIc/dVbc", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gpi", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal input conductance dIb/dVbe", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gmu", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal conductance dIb/dVbc", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gx", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance from base to internal base", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbe", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to emitter capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbex", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base to emitter capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbc", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to collector capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcx", 260, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External Base to collector capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbep", 261, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to emitter capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcp", 262, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to collector capacitance", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "p", 263, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqcb", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal C-B-base cap. equiv. cond.", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqbx", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External C-B-base cap. equiv. cond.", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbe", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-E junction", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbe", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-E jct.", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbc", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-C junction", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbc", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-C jct.", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbx", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-X junction", true );
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbx", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-X jct.", true );
}