kicad/pcbnew/drc/drc_test_provider_annular_w...

499 lines
17 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2022, 2024 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <common.h>
2021-06-11 21:07:02 +00:00
#include <pcb_track.h>
#include <pad.h>
#include <footprint.h>
#include <drc/drc_engine.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider.h>
#include <macros.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_design_settings.h>
/*
Via/pad annular ring width test. Checks if there's sufficient copper ring around
PTH/NPTH holes (vias/pads)
Errors generated:
- DRCE_ANNULAR_WIDTH
Todo:
- check pad holes too.
- pad stack support (different IAR/OAR values depending on layer)
*/
/**
* Find the nearest collision point between two shape line chains.
*
* @note This collision test only tests the shape line chain segments (outline) by setting the
* shape closed status to false.
*
* @param aLhs is the left hand shape line chain to run the collision test on.
* @param aRhs is the right hand shape line chain the run the collision test against \a aLhs.
* @param aClearance is the collision clearance between the two shape line changes.
* @param[out] aDistance is an optional pointer to store the nearest collision distance.
* @param[out] aPt1 is an optional pointer to store the nearest collision point.
* @retrun true if a collision occurs between \a aLhs and \a aRhs otherwise false.
*/
static inline bool collide( const SHAPE_LINE_CHAIN& aLhs, const SHAPE_LINE_CHAIN& aRhs,
int aClearance, int* aDistance = nullptr, VECTOR2I* aPt1 = nullptr )
{
wxCHECK( aLhs.PointCount() && aRhs.PointCount(), false );
VECTOR2I pt1;
bool retv = false;
int dist = std::numeric_limits<int>::max();
int tmp = dist;
SHAPE_LINE_CHAIN lhs( aLhs );
SHAPE_LINE_CHAIN rhs( aRhs );
lhs.SetClosed( false );
lhs.Append( lhs.CPoint( 0 ) );
rhs.SetClosed( false );
rhs.Append( rhs.CPoint( 0 ) );
for( int i = 0; i < rhs.SegmentCount(); i ++ )
{
if( lhs.Collide( rhs.CSegment( i ), tmp, &tmp, &pt1 ) )
{
retv = true;
if( tmp < dist )
dist = tmp;
if( aDistance )
*aDistance = dist;
if( aPt1 )
*aPt1 = pt1;
}
}
return retv;
}
static bool collide( const SHAPE_POLY_SET& aLhs, const SHAPE_LINE_CHAIN& aRhs, int aClearance,
int* aDistance = nullptr, VECTOR2I* aPt1 = nullptr )
{
VECTOR2I pt1;
bool retv = false;
int tmp = std::numeric_limits<int>::max();
int dist = tmp;
for( int i = 0; i < aLhs.OutlineCount(); i++ )
{
if( collide( aLhs.Outline( i ), aRhs, aClearance, &tmp, &pt1 ) )
{
retv = true;
if( tmp < dist )
{
dist = tmp;
if( aDistance )
*aDistance = dist;
if( aPt1 )
*aPt1 = pt1;
}
}
for( int j = 0; j < aLhs.HoleCount( i ); i++ )
{
if( collide( aLhs.CHole( i, j ), aRhs, aClearance, &tmp, &pt1 ) )
{
retv = true;
if( tmp < dist )
{
dist = tmp;
if( aDistance )
*aDistance = dist;
if( aPt1 )
*aPt1 = pt1;
}
}
}
}
return retv;
}
class DRC_TEST_PROVIDER_ANNULAR_WIDTH : public DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_ANNULAR_WIDTH()
{
}
virtual ~DRC_TEST_PROVIDER_ANNULAR_WIDTH()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
2022-03-11 21:16:52 +00:00
return wxT( "annular_width" );
};
virtual const wxString GetDescription() const override
{
2022-03-11 21:16:52 +00:00
return wxT( "Tests pad/via annular rings" );
}
};
bool DRC_TEST_PROVIDER_ANNULAR_WIDTH::Run()
{
if( m_drcEngine->IsErrorLimitExceeded( DRCE_ANNULAR_WIDTH ) )
{
2022-03-11 21:16:52 +00:00
reportAux( wxT( "Annular width violations ignored. Skipping check." ) );
return true; // continue with other tests
}
const int progressDelta = 500;
if( !m_drcEngine->HasRulesForConstraintType( ANNULAR_WIDTH_CONSTRAINT ) )
{
2022-03-11 21:16:52 +00:00
reportAux( wxT( "No annular width constraints found. Tests not run." ) );
return true; // continue with other tests
}
if( !reportPhase( _( "Checking pad & via annular rings..." ) ) )
return false; // DRC cancelled
int maxError = m_drcEngine->GetBoard()->GetDesignSettings().m_MaxError;
auto calcEffort =
[]( BOARD_ITEM* item )
{
switch( item->Type() )
{
case PCB_VIA_T:
return 1;
case PCB_PAD_T:
{
PAD* pad = static_cast<PAD*>( item );
if( !pad->HasHole() || pad->GetAttribute() != PAD_ATTRIB::PTH )
return 0;
if( pad->GetOffset() == VECTOR2I( 0, 0 ) )
{
switch( pad->GetShape() )
{
case PAD_SHAPE::CHAMFERED_RECT:
if( pad->GetChamferRectRatio() > 0.30 )
break;
KI_FALLTHROUGH;
case PAD_SHAPE::CIRCLE:
case PAD_SHAPE::OVAL:
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::ROUNDRECT:
return 1;
default:
break;
}
}
return 5;
}
default:
return 0;
}
};
auto checkAnnularWidth =
2020-09-11 21:50:53 +00:00
[&]( BOARD_ITEM* item ) -> bool
{
if( m_drcEngine->IsErrorLimitExceeded( DRCE_ANNULAR_WIDTH ) )
return false;
// PADSTACKS TODO: once we have padstacks we'll need to run this per-layer....
auto constraint = m_drcEngine->EvalRules( ANNULAR_WIDTH_CONSTRAINT, item, nullptr,
UNDEFINED_LAYER );
int annularWidth = 0;
int v_min = 0;
int v_max = 0;
bool fail_min = false;
bool fail_max = false;
switch( item->Type() )
{
case PCB_VIA_T:
{
PCB_VIA* via = static_cast<PCB_VIA*>( item );
annularWidth = ( via->GetWidth() - via->GetDrillValue() ) / 2;
break;
}
case PCB_PAD_T:
{
PAD* pad = static_cast<PAD*>( item );
bool handled = false;
if( !pad->HasHole() || pad->GetAttribute() != PAD_ATTRIB::PTH )
return true;
std::vector<const PAD*> sameNumPads;
const FOOTPRINT* fp = static_cast<const FOOTPRINT*>( pad->GetParent() );
if( fp )
sameNumPads = fp->GetPads( pad->GetNumber(), pad );
if( pad->GetOffset() == VECTOR2I( 0, 0 ) )
{
switch( pad->GetShape() )
{
case PAD_SHAPE::CIRCLE:
annularWidth = ( pad->GetSizeX() - pad->GetDrillSizeX() ) / 2;
// If there are more pads with the same number. Check to see if the
// pad is embedded inside another pad with the same number below.
if( sameNumPads.empty() )
handled = true;
break;
case PAD_SHAPE::CHAMFERED_RECT:
if( pad->GetChamferRectRatio() > 0.30 )
break;
KI_FALLTHROUGH;
case PAD_SHAPE::OVAL:
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::ROUNDRECT:
annularWidth = std::min( pad->GetSizeX() - pad->GetDrillSizeX(),
pad->GetSizeY() - pad->GetDrillSizeY() ) / 2;
// If there are more pads with the same number. Check to see if the
// pad is embedded inside another pad with the same number below.
if( sameNumPads.empty() )
handled = true;
break;
default:
break;
}
}
if( !handled )
{
// Slow (but general purpose) method.
SEG::ecoord dist_sq;
SHAPE_POLY_SET padOutline;
std::shared_ptr<SHAPE_SEGMENT> slot = pad->GetEffectiveHoleShape();
pad->TransformShapeToPolygon( padOutline, UNDEFINED_LAYER, 0, maxError,
ERROR_INSIDE );
if( sameNumPads.empty() )
{
if( !padOutline.Collide( pad->GetPosition() ) )
{
// Hole outside pad
annularWidth = 0;
}
else
{
// Disable is-inside test in SquaredDistance
padOutline.Outline( 0 ).SetClosed( false );
dist_sq = padOutline.SquaredDistanceToSeg( slot->GetSeg() );
annularWidth = sqrt( dist_sq ) - slot->GetWidth() / 2;
}
}
else if( constraint.Value().HasMin()
&& ( annularWidth < constraint.Value().Min() ) )
{
SHAPE_POLY_SET otherPadOutline;
SHAPE_POLY_SET slotPolygon;
slot->TransformToPolygon( slotPolygon, 0, ERROR_INSIDE );
for( const PAD* sameNumPad : sameNumPads )
{
// Construct the full pad with outline and hole.
sameNumPad->TransformShapeToPolygon( otherPadOutline,
UNDEFINED_LAYER, 0, maxError,
ERROR_OUTSIDE );
sameNumPad->TransformHoleToPolygon( otherPadOutline, 0, maxError,
ERROR_INSIDE );
// If the pad hole under test intersects with another pad outline,
// the annular width calculated above is used.
bool intersects = false;
for( int i = 0; i < otherPadOutline.OutlineCount() && !intersects; i++ )
{
intersects |= slotPolygon.COutline( 0 ).Intersects( otherPadOutline.COutline( i ) );
if( intersects )
continue;
for( int j = 0; j < otherPadOutline.HoleCount( i ) && !intersects; j++ )
{
intersects |= slotPolygon.COutline( 0 ).Intersects( otherPadOutline.CHole( i, j ) );
if( intersects )
continue;
}
}
if( intersects )
continue;
// Determine the effective annular width if the pad hole under
// test lies withing the boundary of another pad outline.
int effectiveWidth = std::numeric_limits<int>::max();
if( collide( otherPadOutline, slotPolygon.Outline( 0 ),
effectiveWidth, &effectiveWidth ) )
{
if( effectiveWidth > annularWidth )
annularWidth = effectiveWidth;
}
}
}
}
break;
}
default:
2020-09-11 21:50:53 +00:00
return true;
}
if( constraint.GetSeverity() == RPT_SEVERITY_IGNORE )
return true;
2020-09-11 21:50:53 +00:00
if( constraint.Value().HasMin() )
{
v_min = constraint.Value().Min();
fail_min = annularWidth < v_min;
2020-09-11 21:50:53 +00:00
}
2020-09-11 21:50:53 +00:00
if( constraint.Value().HasMax() )
{
v_max = constraint.Value().Max();
fail_max = annularWidth > v_max;
2020-09-11 21:50:53 +00:00
}
2020-09-11 21:50:53 +00:00
if( fail_min || fail_max )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_ANNULAR_WIDTH );
wxString msg;
if( fail_min )
{
msg = formatMsg( _( "(%s min annular width %s; actual %s)" ),
constraint.GetName(),
v_min,
annularWidth );
}
if( fail_max )
{
msg = formatMsg( _( "(%s max annular width %s; actual %s)" ),
constraint.GetName(),
v_max,
annularWidth );
}
drcItem->SetErrorMessage( drcItem->GetErrorText() + wxS( " " ) + msg );
2020-09-11 21:50:53 +00:00
drcItem->SetItems( item );
drcItem->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drcItem, item->GetPosition(), item->GetLayer() );
2020-09-11 21:50:53 +00:00
}
2020-09-11 21:50:53 +00:00
return true;
};
BOARD* board = m_drcEngine->GetBoard();
size_t ii = 0;
size_t total = 0;
2021-06-11 21:07:02 +00:00
for( PCB_TRACK* item : board->Tracks() )
total += calcEffort( item );
for( FOOTPRINT* footprint : board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
total += calcEffort( pad );
}
for( PCB_TRACK* item : board->Tracks() )
{
ii += calcEffort( item );
if( !reportProgress( ii, total, progressDelta ) )
return false; // DRC cancelled
if( !checkAnnularWidth( item ) )
break;
}
for( FOOTPRINT* footprint : board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
ii += calcEffort( pad );
if( !reportProgress( ii, total, progressDelta ) )
return false; // DRC cancelled
if( !checkAnnularWidth( pad ) )
break;
}
}
reportRuleStatistics();
return !m_drcEngine->IsCancelled();
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<DRC_TEST_PROVIDER_ANNULAR_WIDTH> dummy;
}