kicad/thirdparty/sentry-native/external/crashpad/snapshot/minidump/minidump_context_converter.cc

279 lines
9.6 KiB
C++
Raw Normal View History

// Copyright 2019 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/minidump/minidump_context_converter.h"
#include <string.h>
#include "base/cxx17_backports.h"
#include "base/logging.h"
#include "minidump/minidump_context.h"
namespace crashpad {
namespace internal {
MinidumpContextConverter::MinidumpContextConverter() : initialized_() {
context_.architecture = CPUArchitecture::kCPUArchitectureUnknown;
}
bool MinidumpContextConverter::Initialize(
CPUArchitecture arch,
const std::vector<unsigned char>& minidump_context) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
if (minidump_context.size() == 0) {
// Thread has no context.
context_.architecture = CPUArchitecture::kCPUArchitectureUnknown;
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
context_.architecture = arch;
if (context_.architecture == CPUArchitecture::kCPUArchitectureX86) {
context_memory_.resize(sizeof(CPUContextX86));
context_.x86 = reinterpret_cast<CPUContextX86*>(context_memory_.data());
const MinidumpContextX86* src =
reinterpret_cast<const MinidumpContextX86*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextX86)) {
return false;
}
if (!(src->context_flags & kMinidumpContextX86)) {
return false;
}
if (src->context_flags & kMinidumpContextX86Extended) {
context_.x86->fxsave = src->fxsave;
} else if (src->context_flags & kMinidumpContextX86FloatingPoint) {
CPUContextX86::FsaveToFxsave(src->fsave, &context_.x86->fxsave);
}
context_.x86->eax = src->eax;
context_.x86->ebx = src->ebx;
context_.x86->ecx = src->ecx;
context_.x86->edx = src->edx;
context_.x86->edi = src->edi;
context_.x86->esi = src->esi;
context_.x86->ebp = src->ebp;
context_.x86->esp = src->esp;
context_.x86->eip = src->eip;
context_.x86->eflags = src->eflags;
context_.x86->cs = static_cast<uint16_t>(src->cs);
context_.x86->ds = static_cast<uint16_t>(src->ds);
context_.x86->es = static_cast<uint16_t>(src->es);
context_.x86->fs = static_cast<uint16_t>(src->fs);
context_.x86->gs = static_cast<uint16_t>(src->gs);
context_.x86->ss = static_cast<uint16_t>(src->ss);
context_.x86->dr0 = src->dr0;
context_.x86->dr1 = src->dr1;
context_.x86->dr2 = src->dr2;
context_.x86->dr3 = src->dr3;
context_.x86->dr6 = src->dr6;
context_.x86->dr7 = src->dr7;
// Minidump passes no value for dr4/5. Our output context has space for
// them. According to spec they're obsolete, but when present read as
// aliases for dr6/7, so we'll do this.
context_.x86->dr4 = src->dr6;
context_.x86->dr5 = src->dr7;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureX86_64) {
context_memory_.resize(sizeof(CPUContextX86_64));
context_.x86_64 =
reinterpret_cast<CPUContextX86_64*>(context_memory_.data());
const MinidumpContextAMD64* src =
reinterpret_cast<const MinidumpContextAMD64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextAMD64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextAMD64)) {
return false;
}
context_.x86_64->fxsave = src->fxsave;
context_.x86_64->cs = src->cs;
context_.x86_64->fs = src->fs;
context_.x86_64->gs = src->gs;
context_.x86_64->rflags = src->eflags;
context_.x86_64->dr0 = src->dr0;
context_.x86_64->dr1 = src->dr1;
context_.x86_64->dr2 = src->dr2;
context_.x86_64->dr3 = src->dr3;
context_.x86_64->dr6 = src->dr6;
context_.x86_64->dr7 = src->dr7;
context_.x86_64->rax = src->rax;
context_.x86_64->rcx = src->rcx;
context_.x86_64->rdx = src->rdx;
context_.x86_64->rbx = src->rbx;
context_.x86_64->rsp = src->rsp;
context_.x86_64->rbp = src->rbp;
context_.x86_64->rsi = src->rsi;
context_.x86_64->rdi = src->rdi;
context_.x86_64->r8 = src->r8;
context_.x86_64->r9 = src->r9;
context_.x86_64->r10 = src->r10;
context_.x86_64->r11 = src->r11;
context_.x86_64->r12 = src->r12;
context_.x86_64->r13 = src->r13;
context_.x86_64->r14 = src->r14;
context_.x86_64->r15 = src->r15;
context_.x86_64->rip = src->rip;
// See comments on x86 above.
context_.x86_64->dr4 = src->dr6;
context_.x86_64->dr5 = src->dr7;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureARM) {
context_memory_.resize(sizeof(CPUContextARM));
context_.arm = reinterpret_cast<CPUContextARM*>(context_memory_.data());
const MinidumpContextARM* src =
reinterpret_cast<const MinidumpContextARM*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextARM)) {
return false;
}
if (!(src->context_flags & kMinidumpContextARM)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.arm->regs[i] = src->regs[i];
}
context_.arm->fp = src->fp;
context_.arm->ip = src->ip;
context_.arm->sp = src->sp;
context_.arm->lr = src->lr;
context_.arm->pc = src->pc;
context_.arm->cpsr = src->cpsr;
context_.arm->vfp_regs.fpscr = src->fpscr;
for (size_t i = 0; i < base::size(src->vfp); i++) {
context_.arm->vfp_regs.vfp[i] = src->vfp[i];
}
context_.arm->have_fpa_regs = false;
context_.arm->have_vfp_regs =
!!(src->context_flags & kMinidumpContextARMVFP);
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureARM64) {
context_memory_.resize(sizeof(CPUContextARM64));
context_.arm64 = reinterpret_cast<CPUContextARM64*>(context_memory_.data());
const MinidumpContextARM64* src =
reinterpret_cast<const MinidumpContextARM64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextARM64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextARM64)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.arm64->regs[i] = src->regs[i];
}
context_.arm64->regs[29] = src->fp;
context_.arm64->regs[30] = src->lr;
for (size_t i = 0; i < base::size(src->fpsimd); i++) {
context_.arm64->fpsimd[i] = src->fpsimd[i];
}
context_.arm64->sp = src->sp;
context_.arm64->pc = src->pc;
context_.arm64->fpcr = src->fpcr;
context_.arm64->fpsr = src->fpsr;
context_.arm64->spsr = src->cpsr;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureMIPSEL) {
context_memory_.resize(sizeof(CPUContextMIPS));
context_.mipsel = reinterpret_cast<CPUContextMIPS*>(context_memory_.data());
const MinidumpContextMIPS* src =
reinterpret_cast<const MinidumpContextMIPS*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextMIPS)) {
return false;
}
if (!(src->context_flags & kMinidumpContextMIPS)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.mipsel->regs[i] = src->regs[i];
}
context_.mipsel->mdhi = static_cast<uint32_t>(src->mdhi);
context_.mipsel->mdlo = static_cast<uint32_t>(src->mdlo);
context_.mipsel->dsp_control = src->dsp_control;
for (size_t i = 0; i < base::size(src->hi); i++) {
context_.mipsel->hi[i] = src->hi[i];
context_.mipsel->lo[i] = src->lo[i];
}
context_.mipsel->cp0_epc = static_cast<uint32_t>(src->epc);
context_.mipsel->cp0_badvaddr = static_cast<uint32_t>(src->badvaddr);
context_.mipsel->cp0_status = src->status;
context_.mipsel->cp0_cause = src->cause;
context_.mipsel->fpcsr = src->fpcsr;
context_.mipsel->fir = src->fir;
memcpy(&context_.mipsel->fpregs, &src->fpregs, sizeof(src->fpregs));
} else if (context_.architecture ==
CPUArchitecture::kCPUArchitectureMIPS64EL) {
context_memory_.resize(sizeof(CPUContextMIPS64));
context_.mips64 =
reinterpret_cast<CPUContextMIPS64*>(context_memory_.data());
const MinidumpContextMIPS64* src =
reinterpret_cast<const MinidumpContextMIPS64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextMIPS64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextMIPS64)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.mips64->regs[i] = src->regs[i];
}
context_.mips64->mdhi = src->mdhi;
context_.mips64->mdlo = src->mdlo;
context_.mips64->dsp_control = src->dsp_control;
for (size_t i = 0; i < base::size(src->hi); i++) {
context_.mips64->hi[i] = src->hi[i];
context_.mips64->lo[i] = src->lo[i];
}
context_.mips64->cp0_epc = src->epc;
context_.mips64->cp0_badvaddr = src->badvaddr;
context_.mips64->cp0_status = src->status;
context_.mips64->cp0_cause = src->cause;
context_.mips64->fpcsr = src->fpcsr;
context_.mips64->fir = src->fir;
memcpy(&context_.mips64->fpregs, &src->fpregs, sizeof(src->fpregs));
} else {
// Architecture is listed as "unknown".
DLOG(ERROR) << "Unknown architecture";
}
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
} // namespace internal
} // namespace crashpad