kicad/pcbnew/zone_filler.cpp

2154 lines
79 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2017 CERN
* Copyright (C) 2014-2023 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_target.h>
2021-06-11 21:07:02 +00:00
#include <pcb_track.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include <thread_pool.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
Clean up arc/circle polygonization. 1) For a while now we've been using a calculated seg count from a given maxError, and a correction factor to push the radius out so that all the error is outside the arc/circle. However, the second calculation (which pre-dates the first) is pretty much just the inverse of the first (and yields nothing more than maxError back). This is particularly sub-optimal given the cost of trig functions. 2) There are a lot of old optimizations to reduce segcounts in certain situations, someting that our error-based calculation compensates for anyway. (Smaller radii need fewer segments to meet the maxError condition.) But perhaps more importantly we now surface maxError in the UI and we don't really want to call it "Max deviation except when it's not". 3) We were also clamping the segCount twice: once in the calculation routine and once in most of it's callers. Furthermore, the caller clamping was inconsistent (both in being done and in the clamping value). We now clamp only in the calculation routine. 4) There's no reason to use the correction factors in the 3Dviewer; it's just a visualization and whether the polygonization error is inside or outside the shape isn't really material. 5) The arc-correction-disabling stuff (used for solder mask layer) was somewhat fragile in that it depended on the caller to turn it back on afterwards. It's now only exposed as a RAII object which automatically cleans up when it goes out of scope. 6) There were also bugs in a couple of the polygonization routines where we'd accumulate round-off error in adding up the segments and end up with an overly long last segment (which of course would voilate the error max). This was the cause of the linked bug and also some issues with vias that we had fudged in the past with extra clearance. Fixes https://gitlab.com/kicad/code/kicad/issues/5567
2020-09-10 23:05:20 +00:00
m_board( aBoard ),
m_brdOutlinesValid( false ),
m_commit( aCommit ),
m_progressReporter( nullptr ),
m_maxError( ARC_HIGH_DEF ),
m_worstClearance( 0 )
{
// To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;
}
ZONE_FILLER::~ZONE_FILLER()
{
}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter )
2020-09-14 17:54:14 +00:00
{
m_progressReporter = aReporter;
2022-02-04 22:44:59 +00:00
wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call "
"SetProgressReporter" ) );
}
/**
* Fills the given list of zones.
*
* NB: Invalidates connectivity - it is up to the caller to obtain a lock on the connectivity
* data before calling Fill to prevent access to stale data by other coroutines (for example,
* ratsnest redraw). This will generally be required if a UI-based progress reporter has been
* installed.
*
* Caller is also responsible for re-building connectivity afterwards.
*/
bool ZONE_FILLER::Fill( std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent )
{
std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill;
std::map<std::pair<ZONE*, PCB_LAYER_ID>, MD5_HASH> oldFillHashes;
std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>> isolatedIslandsMap;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
2020-12-28 18:18:23 +00:00
// Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable.
connectivity->ClearRatsnest();
connectivity->Build( m_board, m_progressReporter );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
m_worstClearance = bds.GetBiggestClearanceValue();
if( m_progressReporter )
{
m_progressReporter->Report( aCheck ? _( "Checking zone fills..." )
: _( "Building zone fills..." ) );
m_progressReporter->SetMaxProgress( aZones.size() );
2020-09-14 17:54:14 +00:00
m_progressReporter->KeepRefreshing();
}
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours();
m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update and cache zone bounding boxes and pad effective shapes so that we don't have to
// make them thread-safe.
//
for( ZONE* zone : m_board->Zones() )
{
zone->CacheBoundingBox();
m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() );
}
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
for( PAD* pad : footprint->Pads() )
{
if( pad->IsDirty() )
2021-01-08 00:26:32 +00:00
{
pad->BuildEffectiveShapes( UNDEFINED_LAYER );
2021-01-08 00:26:32 +00:00
pad->BuildEffectivePolygon();
}
m_worstClearance = std::max( m_worstClearance, pad->GetLocalClearance() );
}
2020-11-13 02:57:11 +00:00
for( ZONE* zone : footprint->Zones() )
{
zone->CacheBoundingBox();
m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() );
}
// Rules may depend on insideCourtyard() or other expressions
footprint->BuildCourtyardCaches();
}
LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask();
auto findHighestPriorityZone = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer,
const int aNetcode,
const std::function<bool( const ZONE* )> aTestFn ) -> ZONE*
{
unsigned highestPriority = 0;
ZONE* highestPriorityZone = nullptr;
for( ZONE* zone : m_board->Zones() )
{
// Rule areas are not filled
if( zone->GetIsRuleArea() )
continue;
if( zone->GetAssignedPriority() < highestPriority )
continue;
if( !zone->IsOnLayer( aItemLayer ) )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( !zone->GetBoundingBox().Intersects( aBBox ) )
continue;
if( !aTestFn( zone ) )
continue;
// Prefer highest priority and matching netcode
if( zone->GetAssignedPriority() > highestPriority || zone->GetNetCode() == aNetcode )
{
highestPriority = zone->GetAssignedPriority();
highestPriorityZone = zone;
}
}
return highestPriorityZone;
};
auto isInPourKeepoutArea = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer,
const VECTOR2I aTestPoint ) -> bool
{
for( ZONE* zone : m_board->Zones() )
{
if( !zone->GetIsRuleArea() )
continue;
if( !zone->GetDoNotAllowCopperPour() )
continue;
if( !zone->IsOnLayer( aItemLayer ) )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( !zone->GetBoundingBox().Intersects( aBBox ) )
continue;
if( zone->Outline()->Contains( aTestPoint ) )
return true;
}
return false;
};
// Determine state of conditional via flashing
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( track );
via->ClearZoneLayerOverrides();
if( !via->GetRemoveUnconnected() )
continue;
BOX2I bbox = via->GetBoundingBox();
VECTOR2I center = via->GetPosition();
int testRadius = via->GetDrillValue() / 2 + 1;
unsigned netcode = via->GetNetCode();
LSET layers = via->GetLayerSet() & boardCuMask;
// Checking if the via hole touches the zone outline
auto viaTestFn = [&]( const ZONE* aZone ) -> bool
{
return aZone->Outline()->Contains( center, -1, testRadius );
};
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( !via->ConditionallyFlashed( layer ) )
continue;
if( isInPourKeepoutArea( bbox, layer, center ) )
{
via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
else
{
ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn );
if( zone && zone->GetNetCode() == via->GetNetCode() )
via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
else
via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
}
}
}
// Determine state of conditional pad flashing
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
pad->ClearZoneLayerOverrides();
if( !pad->GetRemoveUnconnected() )
continue;
BOX2I bbox = pad->GetBoundingBox();
VECTOR2I center = pad->GetPosition();
unsigned netcode = pad->GetNetCode();
LSET layers = pad->GetLayerSet() & boardCuMask;
auto padTestFn = [&]( const ZONE* aZone ) -> bool
{
return aZone->Outline()->Contains( center );
};
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( !pad->ConditionallyFlashed( layer ) )
continue;
if( isInPourKeepoutArea( bbox, layer, center ) )
{
pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
else
{
ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn );
if( zone && zone->GetNetCode() == pad->GetNetCode() )
pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
else
pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
}
}
}
for( ZONE* zone : aZones )
{
// Rule areas are not filled
if( zone->GetIsRuleArea() )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( m_commit )
m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later to know if the
// current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) );
isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS();
}
// Remove existing fill first to prevent drawing invalid polygons on some platforms
zone->UnFill();
}
auto check_fill_dependency =
[&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool
{
// Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
2023-01-15 13:36:25 +00:00
// If the other zone is already filled on the requested layer then we're
// good-to-go
if( aOtherZone->GetFillFlag( aLayer ) )
return false;
2023-01-15 13:36:25 +00:00
// Even if keepouts exclude copper pours, the exclusion is by outline rather than
// filled area, so we're good-to-go here too
if( aOtherZone->GetIsRuleArea() )
return false;
2023-01-15 13:36:25 +00:00
// If the other zone is never going to be filled then don't wait for it
if( aOtherZone->GetNumCorners() <= 2 )
return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) )
return false;
if( aZone->HigherPriority( aOtherZone ) )
return false;
2023-01-15 13:36:25 +00:00
// Same-net zones always use outlines to produce determinate results
if( aOtherZone->SameNet( aZone ) )
return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
BOX2I inflatedBBox = aZone->GetBoundingBox();
inflatedBBox.Inflate( m_worstClearance );
if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) )
return false;
return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance );
};
auto fill_lambda =
[&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
{
PCB_LAYER_ID layer = aFillItem.second;
ZONE* zone = aFillItem.first;
bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE* otherZone : aZones )
{
if( otherZone == zone )
continue;
if( check_fill_dependency( zone, layer, otherZone ) )
{
canFill = false;
break;
}
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return 0;
if( !canFill )
return 0;
// Now we're ready to fill.
{
std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() )
return 0;
SHAPE_POLY_SET fillPolys;
if( !fillSingleZone( zone, layer, fillPolys ) )
return 0;
zone->SetFilledPolysList( layer, fillPolys );
}
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
return 1;
};
auto tesselate_lambda =
[&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
{
if( m_progressReporter && m_progressReporter->IsCancelled() )
return 0;
PCB_LAYER_ID layer = aFillItem.second;
ZONE* zone = aFillItem.first;
{
std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() )
return 0;
zone->CacheTriangulation( layer );
zone->SetFillFlag( layer, true );
}
return 1;
};
// Calculate the copper fills (NB: this is multi-threaded)
//
std::vector<std::pair<std::future<int>, int>> returns;
returns.reserve( toFill.size() );
size_t finished = 0;
bool cancelled = false;
thread_pool& tp = GetKiCadThreadPool();
for( const std::pair<ZONE*, PCB_LAYER_ID>& fillItem : toFill )
returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) );
while( !cancelled && finished != 2 * toFill.size() )
{
for( size_t ii = 0; ii < returns.size(); ++ii )
{
auto& ret = returns[ii];
if( ret.second > 1 )
continue;
std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
if( status == std::future_status::ready )
{
if( ret.first.get() ) // lambda completed
{
++finished;
ret.second++; // go to next step
}
if( !cancelled )
{
// Queue the next step (will re-queue the existing step if it didn't complete)
if( ret.second == 0 )
returns[ii].first = tp.submit( fill_lambda, toFill[ii] );
else if( ret.second == 1 )
returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] );
}
}
}
std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) );
if( m_progressReporter )
{
m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() )
cancelled = true;
}
}
2022-12-05 18:48:12 +00:00
// Make sure that all futures have finished.
2022-12-05 19:09:44 +00:00
// This can happen when the user cancels the above operation
for( auto& ret : returns )
2022-12-05 19:09:44 +00:00
{
if( ret.first.valid() )
2022-12-05 19:09:44 +00:00
{
std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready )
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = ret.first.wait_for( std::chrono::milliseconds( 100 ) );
}
}
}
// Now update the connectivity to check for isolated copper islands
// (NB: FindIsolatedCopperIslands() is multi-threaded)
//
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Removing isolated copper islands..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( m_progressReporter );
connectivity->FillIsolatedIslandsMap( isolatedIslandsMap );
connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
for( ZONE* zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
continue;
zone->SetIsFilled( true );
}
// Now remove isolated copper islands according to the isolated islands strategy assigned
// by the user (always, never, below-certain-size).
//
for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap )
{
// If *all* the polygons are islands, do not remove any of them
bool allIslands = true;
for( const auto& [ layer, layerIslands ] : zoneIslands )
{
if( layerIslands.m_IsolatedOutlines.size()
!= static_cast<size_t>( zone->GetFilledPolysList( layer )->OutlineCount() ) )
{
allIslands = false;
break;
}
}
if( allIslands )
continue;
for( const auto& [ layer, layerIslands ] : zoneIslands )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
if( layerIslands.m_IsolatedOutlines.empty() )
continue;
std::vector<int> islands = layerIslands.m_IsolatedOutlines;
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer );
long long int minArea = zone->GetMinIslandArea();
ISLAND_REMOVAL_MODE mode = zone->GetIslandRemovalMode();
for( int idx : islands )
{
SHAPE_LINE_CHAIN& outline = poly->Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS )
poly->DeletePolygonAndTriangulationData( idx, false );
else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea )
poly->DeletePolygonAndTriangulationData( idx, false );
else
zone->SetIsIsland( layer, idx );
}
poly->UpdateTriangulationDataHash();
zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
}
}
// Now remove islands which are either outside the board edge or fail to meet the minimum
// area requirements
using island_check_return = std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, int>>;
std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, double>> polys_to_check;
// rough estimate to save re-allocation time
polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() );
for( ZONE* zone : aZones )
{
LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 2X the area".
double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 2;
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea );
}
}
auto island_lambda =
[&]( int aStart, int aEnd ) -> island_check_return
{
island_check_return retval;
for( int ii = aStart; ii < aEnd && !cancelled; ++ii )
{
auto [poly, minArea] = polys_to_check[ii];
for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- )
{
SHAPE_POLY_SET island;
SHAPE_POLY_SET intersection;
const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front();
double island_area = test_poly.Area();
if( island_area < minArea )
continue;
island.AddOutline( test_poly );
intersection.BooleanIntersection( m_boardOutline, island,
SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
// Nominally, all of these areas should be either inside or outside the
// board outline. So this test should be able to just compare areas (if
// they are equal, you are inside). But in practice, we sometimes have
// slight overlap at the edges, so testing against half-size area acts as
// a fail-safe.
if( intersection.Area() < island_area / 2.0 )
retval.emplace_back( poly, jj );
}
}
return retval;
};
auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda );
cancelled = false;
// Allow island removal threads to finish
for( size_t ii = 0; ii < island_returns.size(); ++ii )
{
std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() )
{
std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready )
{
if( m_progressReporter )
{
m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() )
cancelled = true;
}
status = ret.wait_for( std::chrono::milliseconds( 100 ) );
}
}
}
if( cancelled )
return false;
for( size_t ii = 0; ii < island_returns.size(); ++ii )
{
std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() )
{
for( auto& action_item : ret.get() )
action_item.first->DeletePolygonAndTriangulationData( action_item.second, true );
}
}
for( ZONE* zone : aZones )
zone->CalculateFilledArea();
2020-09-14 17:54:14 +00:00
if( aCheck )
{
2020-09-14 17:54:14 +00:00
bool outOfDate = false;
for( ZONE* zone : aZones )
2020-09-14 17:54:14 +00:00
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
2020-09-14 17:54:14 +00:00
continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) )
2020-09-14 17:54:14 +00:00
outOfDate = true;
}
}
if( outOfDate )
{
KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ),
2020-09-14 17:54:14 +00:00
_( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL )
return false;
}
else
{
// No need to commit something that hasn't changed (and committing will set
// the modified flag).
return false;
}
}
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->KeepRefreshing();
}
return true;
}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be
* either the thermal clearance or the electrical clearance).
*/
2020-11-12 22:30:02 +00:00
void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles )
{
2021-05-01 12:22:35 +00:00
if( aPad->GetShape() == PAD_SHAPE::CUSTOM )
{
SHAPE_POLY_SET poly;
aPad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
2022-01-01 18:08:03 +00:00
std::vector<VECTOR2I> convex_hull;
BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
2022-01-01 18:08:03 +00:00
for( const VECTOR2I& pt : convex_hull )
aHoles.Append( pt );
}
else
aHoles.Append( poly );
}
else
{
aPad->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
}
}
/**
* Add a knockout for a pad's hole.
*/
void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );
}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which
* might be either the electrical clearance or the board edge clearance).
*/
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap,
bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles )
{
switch( aItem->Type() )
{
2023-06-06 15:09:34 +00:00
case PCB_FIELD_T:
case PCB_TEXT_T:
{
PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );
if( text->IsVisible() )
{
if( text->IsKnockout() )
{
int antiGap = -m_maxError * 2; // Don't leave gaps around knockout text
text->TransformShapeToPolygon( aHoles, aLayer, antiGap, m_maxError, ERROR_OUTSIDE );
}
else
{
text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
}
}
break;
}
case PCB_TEXTBOX_T:
{
PCB_TEXTBOX* textbox = static_cast<PCB_TEXTBOX*>( aItem );
if( textbox->IsVisible() )
textbox->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
break;
}
case PCB_SHAPE_T:
case PCB_TARGET_T:
aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE,
aIgnoreLineWidth );
break;
default:
break;
}
}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add
* in spokes, which must be done later.
*/
void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aFill,
std::vector<PAD*>& aThermalConnectionPads,
std::vector<PAD*>& aNoConnectionPads )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
ZONE_CONNECTION connection;
DRC_CONSTRAINT constraint;
int padClearance;
int holeClearance;
SHAPE_POLY_SET holes;
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
for( PAD* pad : footprint->Pads() )
{
2022-08-31 16:17:14 +00:00
BOX2I padBBox = pad->GetBoundingBox();
padBBox.Inflate( m_worstClearance );
if( !padBBox.Intersects( aZone->GetBoundingBox() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode()
|| pad->GetNetCode() <= 0
|| pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
{
// collect these for knockout in buildCopperItemClearances()
aNoConnectionPads.push_back( pad );
continue;
}
if( aZone->IsTeardropArea() )
{
connection = ZONE_CONNECTION::FULL;
}
else
{
constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer );
connection = constraint.m_ZoneConnection;
}
switch( connection )
{
case ZONE_CONNECTION::THERMAL:
constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone,
aLayer );
padClearance = constraint.GetValue().Min();
if( pad->CanFlashLayer( aLayer ) )
{
aThermalConnectionPads.push_back( pad );
addKnockout( pad, aLayer, padClearance, holes );
}
else if( pad->GetDrillSize().x > 0 )
{
pad->TransformHoleToPolygon( holes, padClearance, m_maxError, ERROR_OUTSIDE );
}
break;
case ZONE_CONNECTION::NONE:
constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad,
aZone, aLayer );
if( constraint.GetValue().Min() > aZone->GetLocalClearance() )
padClearance = constraint.GetValue().Min();
else
padClearance = aZone->GetLocalClearance();
if( pad->FlashLayer( aLayer ) )
{
addKnockout( pad, aLayer, padClearance, holes );
}
else if( pad->GetDrillSize().x > 0 )
{
constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
pad, aZone, aLayer );
if( constraint.GetValue().Min() > padClearance )
holeClearance = constraint.GetValue().Min();
else
holeClearance = padClearance;
pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE );
}
break;
default:
// No knockout
continue;
}
}
}
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are
* not connected to it.
*/
void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer,
const std::vector<PAD*> aNoConnectionPads,
SHAPE_POLY_SET& aHoles )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
long ticker = 0;
auto checkForCancel =
[&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
{
return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
};
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
BOX2I zone_boundingbox = aZone->GetBoundingBox();
int extra_margin = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_ExtraClearance );
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
zone_boundingbox.Inflate( m_worstClearance + extra_margin );
auto evalRulesForItems =
2021-01-01 22:29:15 +00:00
[&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b,
PCB_LAYER_ID aEvalLayer ) -> int
{
DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );
return c.GetValue().Min();
};
// Add non-connected pad clearances
//
auto knockoutPadClearance =
2020-11-12 22:30:02 +00:00
[&]( PAD* aPad )
2020-10-26 12:53:26 +00:00
{
int init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
int gap = init_gap;
bool hasHole = aPad->GetDrillSize().x > 0;
bool flashLayer = aPad->FlashLayer( aLayer );
bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;
2020-10-26 12:53:26 +00:00
if( flashLayer || platedHole )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
}
if( flashLayer && gap > 0 )
addKnockout( aPad, aLayer, gap + extra_margin, aHoles );
if( hasHole )
{
// NPTH do not need copper clearance gaps to their holes
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
gap = init_gap;
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
if( gap > 0 )
addHoleKnockout( aPad, gap + extra_margin, aHoles );
2020-10-26 12:53:26 +00:00
}
};
for( PAD* pad : aNoConnectionPads )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutPadClearance( pad );
2020-10-26 12:53:26 +00:00
}
// Add non-connected track clearances
//
auto knockoutTrackClearance =
2021-06-11 21:07:02 +00:00
[&]( PCB_TRACK* aTrack )
2020-10-26 12:53:26 +00:00
{
if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode()
&& aZone->GetNetCode() != 0;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aTrack, aLayer );
if( aTrack->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
sameNet = false;
}
if( !sameNet )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aTrack, aLayer ) );
}
2020-10-26 12:53:26 +00:00
if( aTrack->Type() == PCB_VIA_T )
{
2021-06-11 21:07:02 +00:00
PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->FlashLayer( aLayer ) && gap > 0 )
{
via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
2020-10-26 12:53:26 +00:00
}
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
aZone, via, aLayer ) );
if( !sameNet )
{
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
aZone, via, aLayer ) );
}
if( gap > 0 )
{
int radius = via->GetDrillValue() / 2;
TransformCircleToPolygon( aHoles, via->GetPosition(),
radius + gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
}
else
{
if( gap > 0 )
{
aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
}
}
2020-10-26 12:53:26 +00:00
};
2021-06-11 21:07:02 +00:00
for( PCB_TRACK* track : m_board->Tracks() )
{
if( !track->IsOnLayer( aLayer ) )
continue;
if( checkForCancel( m_progressReporter ) )
return;
knockoutTrackClearance( track );
}
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto knockoutGraphicClearance =
[&]( BOARD_ITEM* aItem )
{
// A item on the Edge_Cuts or Margin is always seen as on any layer:
if( aItem->IsOnLayer( aLayer )
|| aItem->IsOnLayer( Edge_Cuts )
|| aItem->IsOnLayer( Margin ) )
{
if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool ignoreLineWidths = false;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer );
if( aItem->IsOnLayer( aLayer ) )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer ) );
}
else if( aItem->IsOnLayer( Edge_Cuts ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, Edge_Cuts ) );
ignoreLineWidths = true;
}
else if( aItem->IsOnLayer( Margin ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, Margin ) );
}
addKnockout( aItem, aLayer, gap + extra_margin, ignoreLineWidths, aHoles );
}
}
};
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
knockoutGraphicClearance( &footprint->Reference() );
knockoutGraphicClearance( &footprint->Value() );
std::set<PAD*> allowedNetTiePads;
// Don't knock out holes for graphic items which implement a net-tie to the zone's net
// on the layer being filled.
if( footprint->IsNetTie() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->GetNetCode() == aZone->GetNetCode() )
{
if( pad->IsOnLayer( aLayer ) )
allowedNetTiePads.insert( pad );
for( PAD* other : footprint->GetNetTiePads( pad ) )
{
if( other->IsOnLayer( aLayer ) )
allowedNetTiePads.insert( other );
}
}
}
}
2020-11-13 02:57:11 +00:00
for( BOARD_ITEM* item : footprint->GraphicalItems() )
{
if( checkForCancel( m_progressReporter ) )
return;
BOX2I itemBBox = item->GetBoundingBox();
if( !zone_boundingbox.Intersects( itemBBox ) )
continue;
bool skipItem = false;
if( item->IsOnLayer( aLayer ) )
{
std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape();
for( PAD* pad : allowedNetTiePads )
{
if( pad->GetBoundingBox().Intersects( itemBBox )
&& pad->GetEffectiveShape()->Collide( itemShape.get() ) )
{
skipItem = true;
break;
}
}
}
if( !skipItem )
knockoutGraphicClearance( item );
}
}
for( BOARD_ITEM* item : m_board->Drawings() )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutGraphicClearance( item );
}
// Add non-connected zone clearances
//
auto knockoutZoneClearance =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) )
{
if( aKnockout->GetIsRuleArea() )
{
// Keepouts use outline with no clearance
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError,
ERROR_OUTSIDE, nullptr );
}
else
{
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone,
aKnockout, aLayer );
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone,
aKnockout, aLayer ) );
SHAPE_POLY_SET poly;
aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
aHoles.Append( poly );
}
}
};
for( ZONE* otherZone : m_board->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
// Negative clearance permits zones to short
if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 )
continue;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
knockoutZoneClearance( otherZone );
}
else if( otherZone->HigherPriority( aZone ) )
{
if( !otherZone->SameNet( aZone ) )
knockoutZoneClearance( otherZone );
}
}
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
for( ZONE* otherZone : footprint->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
knockoutZoneClearance( otherZone );
}
else if( otherZone->HigherPriority( aZone ) )
{
if( !otherZone->SameNet( aZone ) )
knockoutZoneClearance( otherZone );
}
}
}
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes the outlines of higher-proirity zones with the same net. These zones should be
* in charge of the fill parameters within their own outlines.
*/
void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aRawFill )
{
BOX2I zoneBBox = aZone->GetBoundingBox();
auto knockoutZoneOutline =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) )
{
// Processing of arc shapes in zones is not yet supported because Clipper
// can't do boolean operations on them. The poly outline must be converted to
// segments first.
SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation();
outline.ClearArcs();
aRawFill.BooleanSubtract( outline, SHAPE_POLY_SET::PM_FAST );
}
};
for( ZONE* otherZone : m_board->Zones() )
{
// Don't use the `HigherPriority()` check here because we _only_ want to knock out zones
// with explicitly higher priorities, not those with equal priorities
if( otherZone->SameNet( aZone )
&& otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() )
{
// Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() )
knockoutZoneOutline( otherZone );
}
}
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
for( ZONE* otherZone : footprint->Zones() )
{
if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) )
{
// Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() )
knockoutZoneOutline( otherZone );
}
}
}
}
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && aDebugLayer == b ) \
{ \
m_board->SetLayerName( b, c ); \
SHAPE_POLY_SET d = a; \
d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \
aFillPolys = d; \
return false; \
} \
}
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by
* m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2
* so that when drawing outline with segments having a thickness of m_ZoneMinThickness the
* outlines will match exactly the initial outlines
* 2 - Knocks out thermal reliefs around thermally-connected pads
* 3 - Builds a set of thermal spoke for the whole zone
* 4 - Knocks out unconnected copper items, deleting any affected spokes
* 5 - Removes unconnected copper islands, deleting any affected spokes
* 6 - Adds in the remaining spokes
*/
bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys )
{
Clean up arc/circle polygonization. 1) For a while now we've been using a calculated seg count from a given maxError, and a correction factor to push the radius out so that all the error is outside the arc/circle. However, the second calculation (which pre-dates the first) is pretty much just the inverse of the first (and yields nothing more than maxError back). This is particularly sub-optimal given the cost of trig functions. 2) There are a lot of old optimizations to reduce segcounts in certain situations, someting that our error-based calculation compensates for anyway. (Smaller radii need fewer segments to meet the maxError condition.) But perhaps more importantly we now surface maxError in the UI and we don't really want to call it "Max deviation except when it's not". 3) We were also clamping the segCount twice: once in the calculation routine and once in most of it's callers. Furthermore, the caller clamping was inconsistent (both in being done and in the clamping value). We now clamp only in the calculation routine. 4) There's no reason to use the correction factors in the 3Dviewer; it's just a visualization and whether the polygonization error is inside or outside the shape isn't really material. 5) The arc-correction-disabling stuff (used for solder mask layer) was somewhat fragile in that it depended on the caller to turn it back on afterwards. It's now only exposed as a RAII object which automatically cleans up when it goes out of scope. 6) There were also bugs in a couple of the polygonization routines where we'd accumulate round-off error in adding up the segments and end up with an overly long last segment (which of course would voilate the error max). This was the cause of the linked bug and also some issues with vias that we had fudged in the past with extra clearance. Fixes https://gitlab.com/kicad/code/kicad/issues/5567
2020-09-10 23:05:20 +00:00
m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = pcbIUScale.mmToIU( 0.001 );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segment count.
SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS;
SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS;
std::vector<PAD*> thermalConnectionPads;
std::vector<PAD*> noConnectionPads;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
SHAPE_POLY_SET clearanceHoles;
aFillPolys = aSmoothedOutline;
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Knockout thermal reliefs.
*/
knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Knockout electrical clearances.
*/
buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Add thermal relief spokes.
*/
buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );
2019-07-11 23:28:46 +00:00
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
2019-07-11 23:28:46 +00:00
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true;
SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation();
testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
{
testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );
testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) );
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
2019-07-11 23:28:46 +00:00
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches();
int interval = 0;
SHAPE_POLY_SET debugSpokes;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
{
const VECTOR2I& testPt = spoke.CPoint( 3 );
2019-07-11 23:28:46 +00:00
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke );
continue;
}
if( interval++ > 400 )
{
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
interval = 0;
}
2019-07-11 23:28:46 +00:00
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
{
// Hit test in both directions to avoid interactions with round-off errors.
// (See https://gitlab.com/kicad/code/kicad/-/issues/13316.)
if( &other != &spoke
&& other.PointInside( testPt, 1, USE_BBOX_CACHES )
&& spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke );
break;
}
}
}
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );
/* -------------------------------------------------------------------------------------
* Prune features that don't meet minimum-width criteria
*/
if( half_min_width - epsilon > epsilon )
aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 1/2 min-thickness on one axis".
for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- )
{
std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii );
2022-08-31 16:17:14 +00:00
BOX2I islandExtents = island.front().BBox();
if( islandExtents.GetSizeMax() < half_min_width )
aFillPolys.DeletePolygon( ii );
}
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Process the hatch pattern (note that we do this while deflated)
*/
2019-12-20 14:11:39 +00:00
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
{
if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) )
return false;
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Finish minimum-width pruning by re-inflating
*/
if( half_min_width - epsilon > epsilon )
aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );
/* -------------------------------------------------------------------------------------
* Ensure additive changes (thermal stubs and inflating acute corners) do not add copper
* outside the zone boundary, inside the clearance holes, or between otherwise isolated
* islands
*/
for( PAD* pad : thermalConnectionPads )
addHoleKnockout( pad, 0, clearanceHoles );
aFillPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) );
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );
/* -------------------------------------------------------------------------------------
* Lastly give any same-net but higher-priority zones control over their own area.
*/
subtractHigherPriorityZones( aZone, aLayer, aFillPolys );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
return true;
}
bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aFillPolys )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
BOX2I zone_boundingbox = aZone->GetBoundingBox();
SHAPE_POLY_SET clearanceHoles;
long ticker = 0;
auto checkForCancel =
[&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
{
return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
};
auto knockoutGraphicClearance =
[&]( BOARD_ITEM* aItem )
{
if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer )
&& aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
DRC_CONSTRAINT cc = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer );
addKnockout( aItem, aLayer, cc.GetValue().Min(), false, clearanceHoles );
}
};
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if( checkForCancel( m_progressReporter ) )
return false;
knockoutGraphicClearance( &footprint->Reference() );
knockoutGraphicClearance( &footprint->Value() );
for( BOARD_ITEM* item : footprint->GraphicalItems() )
knockoutGraphicClearance( item );
}
for( BOARD_ITEM* item : m_board->Drawings() )
{
if( checkForCancel( m_progressReporter ) )
return false;
knockoutGraphicClearance( item );
}
aFillPolys = aSmoothedOutline;
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
for( ZONE* keepout : m_board->Zones() )
{
if( !keepout->GetIsRuleArea() )
continue;
if( keepout->GetDoNotAllowCopperPour() && keepout->IsOnLayer( aLayer ) )
{
if( keepout->GetBoundingBox().Intersects( zone_boundingbox ) )
aFillPolys.BooleanSubtract( *keepout->Outline(), SHAPE_POLY_SET::PM_FAST );
}
}
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = pcbIUScale.mmToIU( 0.001 );
aFillPolys.Deflate( half_min_width - epsilon, SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, m_maxError );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
{
if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) )
return false;
}
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
aFillPolys.Inflate( half_min_width - epsilon, SHAPE_POLY_SET::ROUND_ALL_CORNERS, m_maxError );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
return true;
}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
*/
bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys )
{
SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr;
SHAPE_POLY_SET maxExtents;
SHAPE_POLY_SET smoothedPoly;
PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
{
debugLayer = aLayer;
aLayer = F_Cu;
}
2023-01-15 13:36:25 +00:00
if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) )
return false;
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
if( aZone->IsOnCopperLayer() )
{
if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) )
aZone->SetNeedRefill( false );
}
else
{
if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) )
aZone->SetNeedRefill( false );
}
return true;
}
/**
* Function buildThermalSpokes
*/
void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer,
const std::vector<PAD*>& aSpokedPadsList,
std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
BOX2I zoneBB = aZone->GetBoundingBox();
DRC_CONSTRAINT constraint;
zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance() ) );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
2022-09-17 00:45:14 +00:00
int epsilon = KiROUND( pcbIUScale.IU_PER_MM * 0.04 ); // about 1.5 mil
for( PAD* pad : aSpokedPadsList )
{
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) )
continue;
constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer );
int thermalReliefGap = constraint.GetValue().Min();
constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer );
int spoke_w = constraint.GetValue().Opt();
// Spoke width should ideally be smaller than the pad minor axis.
// Otherwise the thermal shape is not really a thermal relief,
// and the algo to count the actual number of spokes can fail
int spoke_max_allowed_w = std::min( pad->GetSize().x, pad->GetSize().y );
spoke_w = std::max( spoke_w, constraint.Value().Min() );
spoke_w = std::min( spoke_w, constraint.Value().Max() );
// ensure the spoke width is smaller than the pad minor size
spoke_w = std::min( spoke_w, spoke_max_allowed_w );
// Cannot create stubs having a width < zone min thickness
if( spoke_w < aZone->GetMinThickness() )
continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) )
continue;
// Thermal spokes consist of square-ended segments from the pad center to points just
// outside the thermal relief. The outside end has an extra center point (which must be
// at idx 3) which is used for testing whether or not the spoke connects to copper in the
// parent zone.
auto buildSpokesFromOrigin =
[&]( const BOX2I& box )
{
for( int i = 0; i < 4; i++ )
{
SHAPE_LINE_CHAIN spoke;
switch( i )
{
case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, box.GetBottom() );
spoke.Append( 0, box.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, box.GetBottom() );
break;
case 1: // upper stub
spoke.Append( +spoke_half_w, +spoke_half_w );
spoke.Append( -spoke_half_w, +spoke_half_w );
spoke.Append( -spoke_half_w, box.GetTop() );
spoke.Append( 0, box.GetTop() ); // test pt
spoke.Append( +spoke_half_w, box.GetTop() );
break;
case 2: // right stub
spoke.Append( -spoke_half_w, +spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( box.GetRight(), -spoke_half_w );
spoke.Append( box.GetRight(), 0 ); // test pt
spoke.Append( box.GetRight(), +spoke_half_w );
break;
case 3: // left stub
spoke.Append( +spoke_half_w, +spoke_half_w );
spoke.Append( +spoke_half_w, -spoke_half_w );
spoke.Append( box.GetLeft(), -spoke_half_w );
spoke.Append( box.GetLeft(), 0 ); // test pt
spoke.Append( box.GetLeft(), +spoke_half_w );
break;
}
spoke.SetClosed( true );
aSpokesList.push_back( std::move( spoke ) );
}
};
// If the spokes are at a cardinal angle then we can generate them from a bounding box
// without trig.
if( ( pad->GetOrientation() + pad->GetThermalSpokeAngle() ).IsCardinal() )
{
BOX2I spokesBox = pad->GetBoundingBox();
spokesBox.Inflate( thermalReliefGap + epsilon );
// Spokes are from center of pad shape, not from hole.
spokesBox.Offset( - pad->ShapePos() );
buildSpokesFromOrigin( spokesBox );
auto spokeIter = aSpokesList.rbegin();
for( int ii = 0; ii < 4; ++ii, ++spokeIter )
spokeIter->Move( pad->ShapePos() );
}
// Even if the spokes are rotated, we can fudge it for round and square pads by rotating
// the bounding box to match the spokes.
else if( pad->GetSizeX() == pad->GetSizeY() && pad->GetShape() != PAD_SHAPE::CUSTOM )
{
// Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
// from dirtying the real pad's cached shapes.
PAD dummy_pad( *pad );
dummy_pad.SetOrientation( pad->GetThermalSpokeAngle() );
// Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
// offset and is at position 0,0
dummy_pad.SetPosition( VECTOR2I( 0, 0 ) );
dummy_pad.SetOffset( VECTOR2I( 0, 0 ) );
BOX2I spokesBox = dummy_pad.GetBoundingBox();
spokesBox.Inflate( thermalReliefGap + epsilon );
buildSpokesFromOrigin( spokesBox );
auto spokeIter = aSpokesList.rbegin();
for( int ii = 0; ii < 4; ++ii, ++spokeIter )
{
spokeIter->Rotate( pad->GetOrientation() + pad->GetThermalSpokeAngle() );
spokeIter->Move( pad->ShapePos() );
}
}
// And lastly, even when we have to resort to trig, we can use it only in a post-process
// after the rotated-bounding-box trick from above.
else
{
// Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
// from dirtying the real pad's cached shapes.
PAD dummy_pad( *pad );
dummy_pad.SetOrientation( pad->GetThermalSpokeAngle() );
// Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
// offset and is at position 0,0
dummy_pad.SetPosition( VECTOR2I( 0, 0 ) );
dummy_pad.SetOffset( VECTOR2I( 0, 0 ) );
BOX2I spokesBox = dummy_pad.GetBoundingBox();
// In this case make the box -big-; we're going to clip to the "real" bbox later.
spokesBox.Inflate( thermalReliefGap + spokesBox.GetWidth() + spokesBox.GetHeight() );
buildSpokesFromOrigin( spokesBox );
BOX2I realBBox = pad->GetBoundingBox();
realBBox.Inflate( thermalReliefGap + epsilon );
auto spokeIter = aSpokesList.rbegin();
for( int ii = 0; ii < 4; ++ii, ++spokeIter )
{
spokeIter->Rotate( pad->GetOrientation() + pad->GetThermalSpokeAngle() );
spokeIter->Move( pad->ShapePos() );
VECTOR2I origin_p = spokeIter->GetPoint( 0 );
VECTOR2I origin_m = spokeIter->GetPoint( 1 );
VECTOR2I origin = ( origin_p + origin_m ) / 2;
VECTOR2I end_m = spokeIter->GetPoint( 2 );
VECTOR2I end = spokeIter->GetPoint( 3 );
VECTOR2I end_p = spokeIter->GetPoint( 4 );
ClipLine( &realBBox, origin_p.x, origin_p.y, end_p.x, end_p.y );
ClipLine( &realBBox, origin_m.x, origin_m.y, end_m.x, end_m.y );
ClipLine( &realBBox, origin.x, origin.y, end.x, end.y );
spokeIter->SetPoint( 2, end_m );
spokeIter->SetPoint( 3, end );
spokeIter->SetPoint( 4, end_p );
}
}
}
for( size_t ii = 0; ii < aSpokesList.size(); ++ii )
aSpokesList[ii].GenerateBBoxCache();
}
bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys )
{
// Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(),
aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness();
int gridsize = thickness + aZone->GetHatchGap();
int maxError = m_board->GetDesignSettings().m_MaxError;
SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation();
// Use a area that contains the rotated bbox by orientation, and after rotate the result
// by -orientation.
if( !aZone->GetHatchOrientation().IsZero() )
filledPolys.Rotate( - aZone->GetHatchOrientation() );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base;
int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness();
VECTOR2I corner( 0, 0 );;
hole_base.Append( corner );
corner.x += hole_size;
hole_base.Append( corner );
corner.y += hole_size;
hole_base.Append( corner );
corner.x = 0;
hole_base.Append( corner );
hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 )
{
// the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap()
* aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) )
{
SHAPE_POLY_SET smooth_hole;
smooth_hole.AddOutline( hole_base );
int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
maxError = std::max( maxError * 2, smooth_value / 20 );
switch( smooth_level )
{
case 1:
// Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
break;
default:
if( aZone->GetHatchSmoothingLevel() > 2 )
maxError /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 );
break;
case 0:
break;
};
}
}
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ )
{
int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() )
break;
for( int yy = 0; ; yy++ )
{
int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() )
break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base );
hole.Move( VECTOR2I( xpos, ypos ) );
holes.AddOutline( hole );
}
}
holes.Move( bbox.GetPosition() );
if( !aZone->GetHatchOrientation().IsZero() )
holes.Rotate( aZone->GetHatchOrientation() );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );
int outline_margin = aZone->GetMinThickness() * 1.1;
// Using GetHatchThickness() can look more consistent than GetMinThickness().
if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin )
outline_margin = aZone->GetHatchThickness();
// The fill has already been deflated to ensure GetMinThickness() so we just have to
// account for anything beyond that.
SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation();
deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(),
SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, maxError );
holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );
SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation();
deflatedOutline.Deflate( outline_margin, SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, maxError );
holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST );
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );
if( aZone->GetNetCode() != 0 )
{
// Vias and pads connected to the zone must not be allowed to become isolated inside
// one of the holes. Effectively this means their copper outline needs to be expanded
// to be at least as wide as the gap so that it is guaranteed to touch at least one
// edge.
BOX2I zone_boundingbox = aZone->GetBoundingBox();
SHAPE_POLY_SET aprons;
int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
2021-06-11 21:07:02 +00:00
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
2021-06-11 21:07:02 +00:00
PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetNetCode() == aZone->GetNetCode()
&& via->IsOnLayer( aLayer )
&& via->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int r = std::max( min_apron_radius,
via->GetDrillValue() / 2 + outline_margin );
TransformCircleToPolygon( aprons, via->GetPosition(), r, maxError,
ERROR_OUTSIDE );
}
}
}
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : m_board->Footprints() )
{
2020-11-13 02:57:11 +00:00
for( PAD* pad : footprint->Pads() )
{
if( pad->GetNetCode() == aZone->GetNetCode()
&& pad->IsOnLayer( aLayer )
&& pad->GetBoundingBox().Intersects( zone_boundingbox ) )
{
// What we want is to bulk up the pad shape so that the narrowest bit of
// copper between the hole and the apron edge is at least outline_margin
// wide (and that the apron itself meets min_apron_radius. But that would
// take a lot of code and math, and the following approximation is close
// enough.
int pad_width = std::min( pad->GetSize().x, pad->GetSize().y );
int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
int min_annular_ring_width = ( pad_width - slot_width ) / 2;
int clearance = std::max( min_apron_radius - pad_width / 2,
outline_margin - min_annular_ring_width );
clearance = std::max( 0, clearance - linethickness / 2 );
pad->TransformShapeToPolygon( aprons, aLayer, clearance, maxError,
ERROR_OUTSIDE );
}
}
}
holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST );
}
2022-02-04 22:44:59 +00:00
DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); )
{
double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii );
else
++ii;
}
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aFillPolys.BooleanSubtract( aFillPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );
return true;
}