kicad/thirdparty/sentry-native/external/crashpad/minidump/minidump_writable.cc

315 lines
9.3 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "minidump/minidump_writable.h"
#include <stdint.h>
2022-08-16 00:48:53 +00:00
#include <iterator>
2024-04-30 00:11:06 +00:00
#include "base/check_op.h"
#include "base/logging.h"
#include "util/file/file_writer.h"
#include "util/numeric/safe_assignment.h"
namespace {
constexpr size_t kMaximumAlignment = 16;
} // namespace
namespace crashpad {
namespace internal {
MinidumpWritable::~MinidumpWritable() {
}
bool MinidumpWritable::WriteEverything(FileWriterInterface* file_writer) {
DCHECK_EQ(state_, kStateMutable);
if (!Freeze()) {
return false;
}
DCHECK_EQ(state_, kStateFrozen);
FileOffset offset = 0;
std::vector<MinidumpWritable*> write_sequence;
size_t size = WillWriteAtOffset(kPhaseEarly, &offset, &write_sequence);
if (size == kInvalidSize) {
return false;
}
offset += size;
if (WillWriteAtOffset(kPhaseLate, &offset, &write_sequence) == kInvalidSize) {
return false;
}
DCHECK_EQ(state_, kStateWritable);
DCHECK_EQ(write_sequence.front(), this);
for (MinidumpWritable* writable : write_sequence) {
if (!writable->WritePaddingAndObject(file_writer)) {
return false;
}
}
DCHECK_EQ(state_, kStateWritten);
return true;
}
void MinidumpWritable::RegisterRVA(RVA* rva) {
DCHECK_LE(state_, kStateFrozen);
registered_rvas_.push_back(rva);
}
2022-08-16 00:48:53 +00:00
void MinidumpWritable::RegisterRVA(RVA64* rva64) {
DCHECK_LE(state_, kStateFrozen);
registered_rva64s_.push_back(rva64);
}
void MinidumpWritable::RegisterLocationDescriptor(
MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor) {
DCHECK_LE(state_, kStateFrozen);
registered_location_descriptors_.push_back(location_descriptor);
}
2022-08-16 00:48:53 +00:00
void MinidumpWritable::RegisterLocationDescriptor(
MINIDUMP_LOCATION_DESCRIPTOR64* location_descriptor64) {
DCHECK_LE(state_, kStateFrozen);
registered_location_descriptor64s_.push_back(location_descriptor64);
}
MinidumpWritable::MinidumpWritable()
: registered_rvas_(),
2022-08-16 00:48:53 +00:00
registered_rva64s_(),
registered_location_descriptors_(),
2022-08-16 00:48:53 +00:00
registered_location_descriptor64s_(),
leading_pad_bytes_(0),
2022-08-16 00:48:53 +00:00
state_(kStateMutable) {}
bool MinidumpWritable::Freeze() {
DCHECK_EQ(state_, kStateMutable);
state_ = kStateFrozen;
std::vector<MinidumpWritable*> children = Children();
for (MinidumpWritable* child : children) {
if (!child->Freeze()) {
return false;
}
}
return true;
}
size_t MinidumpWritable::Alignment() {
DCHECK_GE(state_, kStateFrozen);
return 4;
}
std::vector<MinidumpWritable*> MinidumpWritable::Children() {
DCHECK_GE(state_, kStateFrozen);
return std::vector<MinidumpWritable*>();
}
MinidumpWritable::Phase MinidumpWritable::WritePhase() {
return kPhaseEarly;
}
size_t MinidumpWritable::WillWriteAtOffset(
Phase phase,
FileOffset* offset,
std::vector<MinidumpWritable*>* write_sequence) {
FileOffset local_offset = *offset;
CHECK_GE(local_offset, 0);
size_t leading_pad_bytes_this_phase;
size_t size;
if (phase == WritePhase()) {
DCHECK_EQ(state_, kStateFrozen);
// Add this object to the sequence of MinidumpWritable objects to be
// written.
write_sequence->push_back(this);
size = SizeOfObject();
if (size > 0) {
// Honor this objects request to be aligned to a specific byte boundary.
// Once the alignment is corrected, this object knows exactly what file
// offset it will be written at.
size_t alignment = Alignment();
CHECK_LE(alignment, kMaximumAlignment);
leading_pad_bytes_this_phase =
(alignment - (local_offset % alignment)) % alignment;
local_offset += leading_pad_bytes_this_phase;
*offset = local_offset;
} else {
// If the object is size 0, alignment is of no concern.
leading_pad_bytes_this_phase = 0;
}
leading_pad_bytes_ = leading_pad_bytes_this_phase;
// Now that the file offset that this object will be written at is known,
// let the subclass implementation know in case its interested.
if (!WillWriteAtOffsetImpl(local_offset)) {
return kInvalidSize;
}
2022-08-16 00:48:53 +00:00
// Populate the 32-bit RVA fields in other objects that have registered to
// point to this one. Typically, a parent object will have registered to
// point to its children, but this can also occur where no parent-child
// relationship exists.
if (!registered_rvas_.empty() ||
!registered_location_descriptors_.empty()) {
RVA local_rva;
if (!AssignIfInRange(&local_rva, local_offset)) {
LOG(ERROR) << "offset " << local_offset << " out of range";
return kInvalidSize;
}
for (RVA* rva : registered_rvas_) {
*rva = local_rva;
}
if (!registered_location_descriptors_.empty()) {
decltype(registered_location_descriptors_[0]->DataSize) local_size;
if (!AssignIfInRange(&local_size, size)) {
LOG(ERROR) << "size " << size << " out of range";
return kInvalidSize;
}
for (MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor :
registered_location_descriptors_) {
location_descriptor->DataSize = local_size;
location_descriptor->Rva = local_rva;
}
}
}
2022-08-16 00:48:53 +00:00
// Populate the 64-bit RVA fields in other objects that have registered to
// point to this one. Typically, a parent object will have registered to
// point to its children, but this can also occur where no parent-child
// relationship exists.
if (!registered_rva64s_.empty() ||
!registered_location_descriptor64s_.empty()) {
RVA64 local_rva64;
if (!AssignIfInRange(&local_rva64, local_offset)) {
LOG(ERROR) << "offset " << local_offset << " out of range";
return kInvalidSize;
}
for (RVA64* rva64 : registered_rva64s_) {
*rva64 = local_rva64;
}
if (!registered_location_descriptor64s_.empty()) {
decltype(registered_location_descriptor64s_[0]->DataSize) local_size;
if (!AssignIfInRange(&local_size, size)) {
LOG(ERROR) << "size " << size << " out of range";
return kInvalidSize;
}
for (MINIDUMP_LOCATION_DESCRIPTOR64* location_descriptor :
registered_location_descriptor64s_) {
location_descriptor->DataSize = local_size;
location_descriptor->Rva = local_rva64;
}
}
}
// This object is now considered writable. However, if it contains RVA/RVA64
// or MINIDUMP_LOCATION_DESCRIPTOR/MINIDUMP_LOCATION_DESCRIPTOR64 fields,
// they may not be fully updated yet, because its the repsonsibility of
// these fields pointees to update them. Once WillWriteAtOffset has
// completed running for both phases on an entire tree, and the entire tree
// has moved into kStateFrozen, all RVA/RVA64 and
// MINIDUMP_LOCATION_DESCRIPTOR/MINIDUMP_LOCATION_DESCRIPTOR64 fields within
// that tree will be populated.
state_ = kStateWritable;
} else {
if (phase == kPhaseEarly) {
DCHECK_EQ(state_, kStateFrozen);
} else {
DCHECK_EQ(state_, kStateWritable);
}
size = 0;
leading_pad_bytes_this_phase = 0;
}
// Loop over children regardless of whether this object itself will write
// during this phase. An objects children are not required to be written
// during the same phase as their parent.
std::vector<MinidumpWritable*> children = Children();
for (MinidumpWritable* child : children) {
// Use “auto” here because its impossible to know whether size_t (size) or
// FileOffset (local_offset) is the wider type, and thus what type the
// result of adding these two variables will have.
auto unaligned_child_offset = local_offset + size;
FileOffset child_offset;
if (!AssignIfInRange(&child_offset, unaligned_child_offset)) {
LOG(ERROR) << "offset " << unaligned_child_offset << " out of range";
return kInvalidSize;
}
size_t child_size =
child->WillWriteAtOffset(phase, &child_offset, write_sequence);
if (child_size == kInvalidSize) {
return kInvalidSize;
}
size += child_size;
}
return leading_pad_bytes_this_phase + size;
}
bool MinidumpWritable::WillWriteAtOffsetImpl(FileOffset offset) {
return true;
}
bool MinidumpWritable::WritePaddingAndObject(FileWriterInterface* file_writer) {
DCHECK_EQ(state_, kStateWritable);
// The number of elements in kZeroes must be at least one less than the
// maximum Alignment() ever encountered.
static constexpr uint8_t kZeroes[kMaximumAlignment - 1] = {};
2022-08-16 00:48:53 +00:00
DCHECK_LE(leading_pad_bytes_, std::size(kZeroes));
if (leading_pad_bytes_) {
if (!file_writer->Write(&kZeroes, leading_pad_bytes_)) {
return false;
}
}
if (!WriteObject(file_writer)) {
return false;
}
state_ = kStateWritten;
return true;
}
} // namespace internal
} // namespace crashpad