kicad/pcbnew/drc_clearance_test_function...

1113 lines
40 KiB
C++
Raw Normal View History

/**
* @file drc_clearance_test_functions.cpp
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2015 Jean-Pierre Charras, jean-pierre.charras@gipsa-lab.inpg.fr
* Copyright (C) 2007 Dick Hollenbeck, dick@softplc.com
* Copyright (C) 2015 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/****************************/
/* DRC control */
/****************************/
#include <fctsys.h>
#include <wxPcbStruct.h>
#include <trigo.h>
#include <pcbnew.h>
#include <drc_stuff.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_marker_pcb.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
/* compare 2 trapezoids (can be rectangle) and return true if distance > aDist
* i.e if for each edge of the first polygon distance from each edge of the other polygon
* is >= aDist
*/
bool trapezoid2trapezoidDRC( wxPoint aTref[4], wxPoint aTcompare[4], int aDist )
{
/* Test if one polygon is contained in the other and thus the polygon overlap.
* This case is not covered by the following check if one polygond is
* completely contained in the other (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, 4, aTcompare[0] ) )
return false;
if( TestPointInsidePolygon( aTcompare, 4, aTref[0] ) )
return false;
int ii, jj, kk, ll;
for( ii = 0, jj = 3; ii<4; jj = ii, ii++ ) // for all edges in aTref
{
for( kk = 0, ll = 3; kk < 4; ll = kk, kk++ ) // for all edges in aTcompare
{
double d;
int intersect = TestForIntersectionOfStraightLineSegments( aTref[ii].x,
aTref[ii].y,
aTref[jj].x,
aTref[jj].y,
aTcompare[kk].x,
aTcompare[kk].y,
aTcompare[ll].x,
aTcompare[ll].y,
NULL, NULL, &d );
if( intersect || (d< aDist) )
return false;
}
}
return true;
}
/* compare a trapezoids (can be rectangle) and a segment and return true if distance > aDist
*/
bool trapezoid2segmentDRC( wxPoint aTref[4], wxPoint aSegStart, wxPoint aSegEnd, int aDist )
{
/* Test if the segment is contained in the polygon.
* This case is not covered by the following check if the segment is
* completely contained in the polygon (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, 4, aSegStart ) )
return false;
int ii, jj;
for( ii = 0, jj = 3; ii < 4; jj = ii, ii++ ) // for all edges in aTref
{
double d;
int intersect = TestForIntersectionOfStraightLineSegments( aTref[ii].x,
aTref[ii].y,
aTref[jj].x,
aTref[jj].y,
aSegStart.x,
aSegStart.y,
aSegEnd.x,
aSegEnd.y,
NULL, NULL, &d );
if( intersect || (d< aDist) )
return false;
}
return true;
}
/* compare a trapezoid to a point and return true if distance > aDist
* do not use this function for horizontal or vertical rectangles
* because there is a faster an easier way to compare the distance
*/
bool trapezoid2pointDRC( wxPoint aTref[4], wxPoint aPcompare, int aDist )
{
/* Test if aPcompare point is contained in the polygon.
* This case is not covered by the following check if this point is inside the polygon
*/
if( TestPointInsidePolygon( aTref, 4, aPcompare ) )
{
return false;
}
// Test distance between aPcompare and each segment of the polygon:
for( int ii = 0, jj = 3; ii < 4; jj = ii, ii++ ) // for all edge in polygon
{
if( TestSegmentHit( aTref[ii], aTref[jj], aPcompare, aDist ) )
return false;
}
return true;
}
bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
{
TRACK* track;
wxPoint delta; // lenght on X and Y axis of segments
LSET layerMask;
int net_code_ref;
wxPoint shape_pos;
NETCLASSPTR netclass = aRefSeg->GetNetClass();
BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();
/* In order to make some calculations more easier or faster,
* pads and tracks coordinates will be made relative to the reference segment origin
*/
wxPoint origin = aRefSeg->GetStart(); // origin will be the origin of other coordinates
m_segmEnd = delta = aRefSeg->GetEnd() - origin;
m_segmAngle = 0;
layerMask = aRefSeg->GetLayerSet();
net_code_ref = aRefSeg->GetNetCode();
// Phase 0 : Test vias
if( aRefSeg->Type() == PCB_VIA_T )
{
const VIA *refvia = static_cast<const VIA*>( aRefSeg );
// test if the via size is smaller than minimum
if( refvia->GetViaType() == VIA_MICROVIA )
{
if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_TOO_SMALL_MICROVIA, m_currentMarker );
return false;
}
}
else
{
if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_TOO_SMALL_VIA, m_currentMarker );
return false;
}
}
// test if via's hole is bigger than its diameter
// This test is necessary since the via hole size and width can be modified
// and a default via hole can be bigger than some vias sizes
if( refvia->GetDrillValue() > refvia->GetWidth() )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_VIA_HOLE_BIGGER, m_currentMarker );
return false;
}
// For microvias: test if they are blind vias and only between 2 layers
// because they are used for very small drill size and are drill by laser
// and **only one layer** can be drilled
if( refvia->GetViaType() == VIA_MICROVIA )
{
LAYER_ID layer1, layer2;
bool err = true;
refvia->LayerPair( &layer1, &layer2 );
if( layer1 > layer2 )
std::swap( layer1, layer2 );
if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
err = false;
else if( layer1 == F_Cu && layer2 == In1_Cu )
err = false;
if( err )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker );
return false;
}
}
}
else // This is a track segment
{
if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
{
m_currentMarker = fillMarker( aRefSeg, NULL,
DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker );
return false;
}
}
// for a non horizontal or vertical segment Compute the segment angle
// in tenths of degrees and its length
if( delta.x || delta.y )
{
// Compute the segment angle in 0,1 degrees
m_segmAngle = ArcTangente( delta.y, delta.x );
// Compute the segment length: we build an equivalent rotated segment,
// this segment is horizontal, therefore dx = length
RotatePoint( &delta, m_segmAngle ); // delta.x = length, delta.y = 0
}
m_segmLength = delta.x;
/******************************************/
/* Phase 1 : test DRC track to pads : */
/******************************************/
/* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
* but having a hole
* This dummy pad has the size and shape of the hole
* to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( m_pcb ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
2012-02-19 04:02:19 +00:00
dummypad.SetLayerSet( LSET::AllCuMask() ); // Ensure the hole is on all layers
// Compute the min distance to pads
if( testPads )
{
unsigned pad_count = m_pcb->GetPadCount();
for( unsigned ii = 0; ii<pad_count; ++ii )
{
D_PAD* pad = m_pcb->GetPad( ii );
/* No problem if pads are on an other layer,
* But if a drill hole exists (a pad on a single layer can have a hole!)
* we must test the hole
*/
if( !( pad->GetLayerSet() & layerMask ).any() )
{
/* We must test the pad hole. In order to use the function
* checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
* size like the hole
*/
2012-02-19 04:02:19 +00:00
if( pad->GetDrillSize().x == 0 )
continue;
2012-02-19 04:02:19 +00:00
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetPosition( pad->GetPosition() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
2012-02-19 04:02:19 +00:00
dummypad.SetOrientation( pad->GetOrientation() );
m_padToTestPos = dummypad.GetPosition() - origin;
if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
netclass->GetClearance() ) )
{
m_currentMarker = fillMarker( aRefSeg, pad,
DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker );
return false;
}
continue;
}
2012-02-19 04:02:19 +00:00
// The pad must be in a net (i.e pt_pad->GetNet() != 0 )
// but no problem if the pad netcode is the current netcode (same net)
if( pad->GetNetCode() // the pad must be connected
&& net_code_ref == pad->GetNetCode() ) // the pad net is the same as current net -> Ok
continue;
// DRC for the pad
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
shape_pos = pad->ShapePos();
m_padToTestPos = shape_pos - origin;
if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) )
{
m_currentMarker = fillMarker( aRefSeg, pad,
DRCE_TRACK_NEAR_PAD, m_currentMarker );
return false;
}
}
}
/***********************************************/
/* Phase 2: test DRC with other track segments */
/***********************************************/
// At this point the reference segment is the X axis
// Test the reference segment with other track segments
wxPoint segStartPoint;
wxPoint segEndPoint;
for( track = aStart; track; track = track->Next() )
{
// No problem if segments have the same net code:
if( net_code_ref == track->GetNetCode() )
continue;
// No problem if segment are on different layers :
if( !( layerMask & track->GetLayerSet() ).any() )
continue;
// the minimum distance = clearance plus half the reference track
// width plus half the other track's width
int w_dist = aRefSeg->GetClearance( track );
w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2;
// If the reference segment is a via, we test it here
if( aRefSeg->Type() == PCB_VIA_T )
{
delta = track->GetEnd() - track->GetStart();
segStartPoint = aRefSeg->GetStart() - track->GetStart();
if( track->Type() == PCB_VIA_T )
{
// Test distance between two vias, i.e. two circles, trivial case
if( EuclideanNorm( segStartPoint ) < w_dist )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_VIA_NEAR_VIA, m_currentMarker );
return false;
}
}
else // test via to segment
{
// Compute l'angle du segment a tester;
double angle = ArcTangente( delta.y, delta.x );
// Compute new coordinates ( the segment become horizontal)
RotatePoint( &delta, angle );
RotatePoint( &segStartPoint, angle );
if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( track, aRefSeg,
DRCE_VIA_NEAR_TRACK, m_currentMarker );
return false;
}
}
continue;
}
/* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
* the segment to test in the new axis : the new X axis is the
* reference segment. We must translate and rotate the segment to test
*/
segStartPoint = track->GetStart() - origin;
segEndPoint = track->GetEnd() - origin;
RotatePoint( &segStartPoint, m_segmAngle );
RotatePoint( &segEndPoint, m_segmAngle );
if( track->Type() == PCB_VIA_T )
{
if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
continue;
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_NEAR_VIA, m_currentMarker );
return false;
}
/* We have changed axis:
* the reference segment is Horizontal.
* 3 cases : the segment to test can be parallel, perpendicular or have an other direction
*/
if( segStartPoint.y == segEndPoint.y ) // parallel segments
{
if( abs( segStartPoint.y ) >= w_dist )
continue;
// Ensure segStartPoint.x <= segEndPoint.x
if( segStartPoint.x > segEndPoint.x )
std::swap( segStartPoint.x, segEndPoint.x );
if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) ) /* possible error drc */
{
// the start point is inside the reference range
// X........
// O--REF--+
// Fine test : we consider the rounded shape of each end of the track segment:
if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS1, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS2, m_currentMarker );
return false;
}
}
if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) )
{
// the end point is inside the reference range
// .....X
// O--REF--+
// Fine test : we consider the rounded shape of the ends
if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS3, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS4, m_currentMarker );
return false;
}
}
if( segStartPoint.x <=0 && segEndPoint.x >= 0 )
{
// the segment straddles the reference range (this actually only
// checks if it straddles the origin, because the other cases where already
// handled)
// X.............X
// O--REF--+
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker );
return false;
}
}
else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
{
if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) )
continue;
// Test if segments are crossing
if( segStartPoint.y > segEndPoint.y )
std::swap( segStartPoint.y, segEndPoint.y );
if( (segStartPoint.y < 0) && (segEndPoint.y > 0) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACKS_CROSSING, m_currentMarker );
return false;
}
// At this point the drc error is due to an end near a reference segm end
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM1, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM2, m_currentMarker );
return false;
}
}
else // segments quelconques entre eux
{
// calcul de la "surface de securite du segment de reference
// First rought 'and fast) test : the track segment is like a rectangle
m_xcliplo = m_ycliplo = -w_dist;
m_xcliphi = m_segmLength + w_dist;
m_ycliphi = w_dist;
// A fine test is needed because a serment is not exactly a
// rectangle, it has rounded ends
if( !checkLine( segStartPoint, segEndPoint ) )
{
/* 2eme passe : the track has rounded ends.
* we must a fine test for each rounded end and the
* rectangular zone
*/
m_xcliplo = 0;
m_xcliphi = m_segmLength;
if( !checkLine( segStartPoint, segEndPoint ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM3, m_currentMarker );
return false;
}
else // The drc error is due to the starting or the ending point of the reference segment
{
// Test the starting and the ending point
segStartPoint = track->GetStart();
segEndPoint = track->GetEnd();
delta = segEndPoint - segStartPoint;
// Compute the segment orientation (angle) en 0,1 degre
double angle = ArcTangente( delta.y, delta.x );
// Compute the segment lenght: delta.x = lenght after rotation
RotatePoint( &delta, angle );
/* Comute the reference segment coordinates relatives to a
* X axis = current tested segment
*/
wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
wxPoint relEndPos = aRefSeg->GetEnd() - segStartPoint;
RotatePoint( &relStartPos, angle );
RotatePoint( &relEndPos, angle );
if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM4, m_currentMarker );
return false;
}
if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM5, m_currentMarker );
return false;
}
}
}
}
}
return true;
}
/* test DRC between 2 pads.
* this function can be also used to test DRC between a pas and a hole,
* because a hole is like a round pad.
*/
bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad )
{
int dist;
// Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad
int dist_min = aRefPad->GetClearance( aPad );
// relativePadPos is the aPad shape position relative to the aRefPad shape position
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
dist = KiROUND( EuclideanNorm( relativePadPos ) );
// Quick test: Clearance is OK if the bounding circles are further away than "dist_min"
2012-02-19 04:02:19 +00:00
if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min )
return true;
/* Here, pads are near and DRC depend on the pad shapes
* We must compare distance using a fine shape analysis
* Because a circle or oval shape is the easier shape to test, try to have
* aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
* if aRefPad = TRAP. and aPad = RECT, also swap pads
* Swap aRefPad and aPad if needed
*/
bool swap_pads;
swap_pads = false;
// swap pads to make comparisons easier
// priority is aRefPad = ROUND then OVAL then RECT then other
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
{
// pad ref shape is here oval, rect or trapezoid
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
swap_pads = true;
break;
case PAD_SHAPE_OVAL:
swap_pads = true;
break;
case PAD_SHAPE_RECT:
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
swap_pads = true;
break;
default:
break;
}
}
if( swap_pads )
{
std::swap( aRefPad, aPad );
relativePadPos = -relativePadPos;
}
/* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL,
* if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
* Therefore, if aRefPad is a PAD_SHAPE_SHAPE_RECT or a PAD_SHAPE_TRAPEZOID,
* aPad is also a PAD_SHAPE_RECT or a PAD_SHAPE_TRAPEZOID
*/
bool diag = true;
2012-02-19 04:02:19 +00:00
switch( aRefPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
/* One can use checkClearanceSegmToPad to test clearance
2012-02-19 04:02:19 +00:00
* aRefPad is like a track segment with a null length and a witdth = GetSize().x
*/
m_segmLength = 0;
m_segmAngle = 0;
m_segmEnd.x = m_segmEnd.y = 0;
m_padToTestPos = relativePadPos;
2012-02-19 04:02:19 +00:00
diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min );
break;
case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */
{
/* Create a track segment with same dimensions as the oval aRefPad
* and use checkClearanceSegmToPad function to test aPad to aRefPad clearance
*/
int segm_width;
2012-02-19 04:02:19 +00:00
m_segmAngle = aRefPad->GetOrientation(); // Segment orient.
2012-02-19 04:02:19 +00:00
if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment
{
2012-02-19 04:02:19 +00:00
segm_width = aRefPad->GetSize().y;
m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y;
}
else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg
{
2012-02-19 04:02:19 +00:00
segm_width = aRefPad->GetSize().x;
m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x;
m_segmAngle += 900;
}
/* the start point must be 0,0 and currently relativePadPos
* is relative the center of pad coordinate */
wxPoint segstart;
segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment
RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment
// Calculate segment end position relative to the segment origin
m_segmEnd.x = -2 * segstart.x;
m_segmEnd.y = -2 * segstart.y;
// Recalculate the equivalent segment angle in 0,1 degrees
// to prepare a call to checkClearanceSegmToPad()
m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x );
// move pad position relative to the segment origin
m_padToTestPos = relativePadPos - segstart;
// Use segment to pad check to test the second pad:
diag = checkClearanceSegmToPad( aPad, segm_width, dist_min );
break;
}
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_RECT:
{
wxPoint polyref[4]; // Shape of aRefPad
wxPoint polycompare[4]; // Shape of aPad
2012-02-19 04:02:19 +00:00
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
// Move aPad shape to relativePadPos
for( int ii = 0; ii < 4; ii++ )
polycompare[ii] += relativePadPos;
// And now test polygons:
if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) )
diag = false;
}
break;
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape" ) );
break;
}
return diag;
}
/* test if distance between a segment is > aMinDist
* segment start point is assumed in (0,0) and segment start point in m_segmEnd
* and its orientation is m_segmAngle (m_segmAngle must be already initialized)
* and have aSegmentWidth.
*/
bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
{
wxSize padHalfsize; // half dimension of the pad
wxPoint startPoint, endPoint;
int segmHalfWidth = aSegmentWidth / 2;
int distToLine = segmHalfWidth + aMinDist;
2012-02-19 04:02:19 +00:00
padHalfsize.x = aPad->GetSize().x >> 1;
padHalfsize.y = aPad->GetSize().y >> 1;
if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID ) // The size is bigger, due to GetDelta() extra size
{
padHalfsize.x += std::abs(aPad->GetDelta().y) / 2; // Remember: GetDelta().y is the GetSize().x change
padHalfsize.y += std::abs(aPad->GetDelta().x) / 2; // Remember: GetDelta().x is the GetSize().y change
}
if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
{
/* Easy case: just test the distance between segment and pad centre
* calculate pad coordinates in the X,Y axis with X axis = segment to test
*/
RotatePoint( &m_padToTestPos, m_segmAngle );
return checkMarginToCircle( m_padToTestPos, distToLine + padHalfsize.x, m_segmLength );
}
/* calculate the bounding box of the pad, including the clearance and the segment width
* if the line from 0 to m_segmEnd does not intersect this bounding box,
* the clearance is always OK
* But if intersect, a better analysis of the pad shape must be done.
*/
m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - distToLine - padHalfsize.y;
m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + distToLine + padHalfsize.y;
startPoint.x = startPoint.y = 0;
endPoint = m_segmEnd;
double orient = aPad->GetOrientation();
RotatePoint( &startPoint, m_padToTestPos, -orient );
RotatePoint( &endPoint, m_padToTestPos, -orient );
if( checkLine( startPoint, endPoint ) )
return true;
/* segment intersects the bounding box. But there is not always a DRC error.
* A fine analysis of the pad shape must be done.
*/
2012-02-19 04:02:19 +00:00
switch( aPad->GetShape() )
{
default:
return false;
case PAD_SHAPE_OVAL:
{
/* an oval is a complex shape, but is a rectangle and 2 circles
* these 3 basic shapes are more easy to test.
*
* In calculations we are using a vertical oval shape
* (i.e. a vertical rounded segment)
* for horizontal oval shapes, swap x and y size and rotate the shape
*/
if( padHalfsize.x > padHalfsize.y )
{
std::swap( padHalfsize.x, padHalfsize.y );
orient = AddAngles( orient, 900 );
}
// here, padHalfsize.x is the radius of rounded ends.
int deltay = padHalfsize.y - padHalfsize.x;
// here: padHalfsize.x = radius,
// deltay = dist between the centre pad and the centre of a rounded end
// Test the rectangular area between the two circles (the rounded ends)
m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - deltay;
m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + deltay;
if( !checkLine( startPoint, endPoint ) )
{
return false;
}
// test the first circle
startPoint.x = m_padToTestPos.x; // startPoint = centre of the upper circle of the oval shape
startPoint.y = m_padToTestPos.y + deltay;
// Calculate the actual position of the circle, given the pad orientation:
RotatePoint( &startPoint, m_padToTestPos, orient );
// Calculate the actual position of the circle in the new X,Y axis:
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
{
return false;
}
// test the second circle
startPoint.x = m_padToTestPos.x; // startPoint = centre of the lower circle of the oval shape
startPoint.y = m_padToTestPos.y - deltay;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
{
return false;
}
}
break;
case PAD_SHAPE_RECT:
// the area to test is a rounded rectangle.
// this can be done by testing 2 rectangles and 4 circles (the corners)
// Testing the first rectangle dimx + distToLine, dimy:
m_xcliplo = m_padToTestPos.x - padHalfsize.x - distToLine;
m_ycliplo = m_padToTestPos.y - padHalfsize.y;
m_xcliphi = m_padToTestPos.x + padHalfsize.x + distToLine;
m_ycliphi = m_padToTestPos.y + padHalfsize.y;
if( !checkLine( startPoint, endPoint ) )
return false;
// Testing the second rectangle dimx , dimy + distToLine
m_xcliplo = m_padToTestPos.x - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - padHalfsize.y - distToLine;
m_xcliphi = m_padToTestPos.x + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + padHalfsize.y + distToLine;
if( !checkLine( startPoint, endPoint ) )
return false;
// testing the 4 circles which are the clearance area of each corner:
// testing the left top corner of the rectangle
startPoint.x = m_padToTestPos.x - padHalfsize.x;
startPoint.y = m_padToTestPos.y - padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the right top corner of the rectangle
startPoint.x = m_padToTestPos.x + padHalfsize.x;
startPoint.y = m_padToTestPos.y - padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the left bottom corner of the rectangle
startPoint.x = m_padToTestPos.x - padHalfsize.x;
startPoint.y = m_padToTestPos.y + padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the right bottom corner of the rectangle
startPoint.x = m_padToTestPos.x + padHalfsize.x;
startPoint.y = m_padToTestPos.y + padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
break;
case PAD_SHAPE_TRAPEZOID:
{
wxPoint poly[4];
aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );
// Move shape to m_padToTestPos
for( int ii = 0; ii < 4; ii++ )
{
poly[ii] += m_padToTestPos;
RotatePoint( &poly[ii], m_segmAngle );
}
if( !trapezoid2segmentDRC( poly, wxPoint( 0, 0 ), wxPoint(m_segmLength,0), distToLine ) )
return false;
}
break;
}
return true;
}
/**
* Helper function checkMarginToCircle
* Check the distance between a circle (round pad, via or round end of track)
* and a segment. the segment is expected starting at 0,0, and on the X axis
* return true if distance >= aRadius
*/
bool DRC::checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength )
{
if( abs( aCentre.y ) > aRadius ) // trivial case
return true;
// Here, distance between aCentre and X axis is < aRadius
if( (aCentre.x >= -aRadius ) && ( aCentre.x <= (aLength + aRadius) ) )
{
if( (aCentre.x >= 0) && (aCentre.x <= aLength) )
return false; // aCentre is between the starting point and the ending point of the segm
if( aCentre.x > aLength ) // aCentre is after the ending point
aCentre.x -= aLength; // move aCentre to the starting point of the segment
if( EuclideanNorm( aCentre ) < aRadius )
// distance between aCentre and the starting point or the ending point is < aRadius
return false;
}
return true;
}
// Helper function used in checkLine::
static inline int USCALE( unsigned arg, unsigned num, unsigned den )
{
int ii;
2013-05-04 11:57:09 +00:00
ii = KiROUND( ( (double) arg * num ) / den );
return ii;
}
/** Helper function checkLine
* Test if a line intersects a bounding box (a rectangle)
* The rectangle is defined by m_xcliplo, m_ycliplo and m_xcliphi, m_ycliphi
* return true if the line from aSegStart to aSegEnd is outside the bounding box
*/
bool DRC::checkLine( wxPoint aSegStart, wxPoint aSegEnd )
{
#define WHEN_OUTSIDE return true
#define WHEN_INSIDE
int temp;
if( aSegStart.x > aSegEnd.x )
std::swap( aSegStart, aSegEnd );
if( (aSegEnd.x < m_xcliplo) || (aSegStart.x > m_xcliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y < aSegEnd.y )
{
if( (aSegEnd.y < m_ycliplo) || (aSegStart.y > m_ycliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y < m_ycliplo )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegStart.y),
(aSegEnd.y - aSegStart.y) );
if( (aSegStart.x += temp) > m_xcliphi )
{
WHEN_OUTSIDE;
}
aSegStart.y = m_ycliplo;
WHEN_INSIDE;
}
if( aSegEnd.y > m_ycliphi )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegEnd.y - m_ycliphi),
(aSegEnd.y - aSegStart.y) );
if( (aSegEnd.x -= temp) < m_xcliplo )
{
WHEN_OUTSIDE;
}
aSegEnd.y = m_ycliphi;
WHEN_INSIDE;
}
if( aSegStart.x < m_xcliplo )
{
temp = USCALE( (aSegEnd.y - aSegStart.y), (m_xcliplo - aSegStart.x),
(aSegEnd.x - aSegStart.x) );
aSegStart.y += temp;
aSegStart.x = m_xcliplo;
WHEN_INSIDE;
}
if( aSegEnd.x > m_xcliphi )
{
temp = USCALE( (aSegEnd.y - aSegStart.y), (aSegEnd.x - m_xcliphi),
(aSegEnd.x - aSegStart.x) );
aSegEnd.y -= temp;
aSegEnd.x = m_xcliphi;
WHEN_INSIDE;
}
}
else
{
if( (aSegStart.y < m_ycliplo) || (aSegEnd.y > m_ycliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y > m_ycliphi )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegStart.y - m_ycliphi),
(aSegStart.y - aSegEnd.y) );
if( (aSegStart.x += temp) > m_xcliphi )
{
WHEN_OUTSIDE;
}
aSegStart.y = m_ycliphi;
WHEN_INSIDE;
}
if( aSegEnd.y < m_ycliplo )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegEnd.y),
(aSegStart.y - aSegEnd.y) );
if( (aSegEnd.x -= temp) < m_xcliplo )
{
WHEN_OUTSIDE;
}
aSegEnd.y = m_ycliplo;
WHEN_INSIDE;
}
if( aSegStart.x < m_xcliplo )
{
temp = USCALE( (aSegStart.y - aSegEnd.y), (m_xcliplo - aSegStart.x),
(aSegEnd.x - aSegStart.x) );
aSegStart.y -= temp;
aSegStart.x = m_xcliplo;
WHEN_INSIDE;
}
if( aSegEnd.x > m_xcliphi )
{
temp = USCALE( (aSegStart.y - aSegEnd.y), (aSegEnd.x - m_xcliphi),
(aSegEnd.x - aSegStart.x) );
aSegEnd.y += temp;
aSegEnd.x = m_xcliphi;
WHEN_INSIDE;
}
}
if( ( (aSegEnd.x + aSegStart.x) / 2 <= m_xcliphi )
&& ( (aSegEnd.x + aSegStart.x) / 2 >= m_xcliplo ) \
&& ( (aSegEnd.y + aSegStart.y) / 2 <= m_ycliphi )
&& ( (aSegEnd.y + aSegStart.y) / 2 >= m_ycliplo ) )
{
return false;
}
else
{
return true;
}
}