Strict-order points in connection_width

The connection width checker uses morton codes to order elements.  The
sort should be primarily morton-based but needs to be stable in order to
ensure that nextZ/prevZ elements are properly placed as the actual
next/prev elements in the list.  Otherwise, hitting a fracture point
might make us skip in the wrong direction

Fixes https://gitlab.com/kicad/code/kicad/issues/12831
This commit is contained in:
Seth Hillbrand 2022-12-03 14:48:55 -08:00
parent 7d2f83ea29
commit b5bd633625
1 changed files with 84 additions and 64 deletions

View File

@ -252,7 +252,10 @@ private:
std::sort( queue.begin(), queue.end(), []( const Vertex* a, const Vertex* b )
{
return a->z < b->z;
return a->z < b->z || ( a->z == b->z
&& ( ( a->x < b->x )
|| ( a->y < b->y )
|| ( a->i < b->i ) ) );
} );
Vertex* prev_elem = nullptr;
@ -309,39 +312,15 @@ private:
return x | ( y << 1 );
}
/**
* Checks to see if there is a "substantial" protrusion in each polygon produced by the cut from
* aA to aB. Substantial in this case means that the polygon bulges out to a wider cross-section
* than the distance from aA to aB
* @param aA Starting point in the polygon
* @param aB Ending point in the polygon
* @return True if the two polygons are both "substantial"
*/
bool isSubstantial( Vertex* aA, Vertex* aB ) const
constexpr bool same_point( const Vertex* aA, const Vertex* aB ) const
{
// `directions` is a bitfield where
// bit 0 = pos y
// bit 1 = neg y
// bit 2 = pos x
// bit 3 = neg x
// So, once directions = 15, we have all directions
int directions = 0;
return aA && aB && aA->x == aB->x && aA->y == aB->y;
}
// This is a failsafe in case of invalid lists. Never check
// more than the total number of points in m_vertices
size_t checked = 0;
size_t total_pts = m_vertices.size();
Vertex* p0 = aA;
Vertex* p;
Vertex* nz = p0->nextZ;
Vertex* pz = p0->prevZ;
auto same_point =
[]( const Vertex* a, const Vertex* b ) -> bool
Vertex* getNextOutlineVertex( const Vertex* aPt ) const
{
return a && b && a->x == b->x && a->y == b->y;
};
Vertex* nz = aPt->nextZ;
Vertex* pz = aPt->prevZ;
// If we hit a fracture point, we want to continue around the
// edge we are working on and not switch to the pair edge
@ -350,22 +329,76 @@ private:
// a new fracture point, then we know that we are proceeding
// in the wrong direction from the fracture and should
// fall through to the next point
if( same_point( p0, nz )
if( same_point( aPt, nz )
&& !( same_point( nz->next, nz->next->prevZ ) || same_point( nz->next, nz->next->nextZ ) ) )
{
p = nz->next;
return nz->next;
}
else if( same_point( p0, pz )
else if( same_point( aPt, pz )
&& !( same_point( pz->next, pz->next->prevZ ) || same_point( pz->next, pz->next->nextZ ) ) )
{
p = pz->next;
}
else
{
p = p0->next;
return pz->next;
}
while( p0 != aB && checked < total_pts && directions != 0b1111 )
return aPt->next;
}
Vertex* getPrevOutlineVertex( const Vertex* aPt ) const
{
Vertex* nz = aPt->nextZ;
Vertex* pz = aPt->prevZ;
// If we hit a fracture point, we want to continue around the
// edge we are working on and not switch to the pair edge
// However, this will depend on which direction the initial
// fracture hit is. If we find that we skip directly to
// a new fracture point, then we know that we are proceeding
// in the wrong direction from the fracture and should
// fall through to the next point
if( same_point( aPt, nz )
&& !( same_point( nz->prev, nz->prev->nextZ ) || same_point( nz->prev, nz->prev->prevZ ) ) )
{
return nz->prev;
}
else if( same_point( aPt, pz )
&& !( same_point( pz->prev, pz->prev->nextZ ) || same_point( pz->prev, pz->prev->prevZ ) ) )
{
return pz->prev;
}
return aPt->prev;
}
/**
* Checks to see if there is a "substantial" protrusion in each polygon produced by the cut from
* aA to aB. Substantial in this case means that the polygon bulges out to a wider cross-section
* than the distance from aA to aB
* @param aA Starting point in the polygon
* @param aB Ending point in the polygon
* @return True if the two polygons are both "substantial"
*/
bool isSubstantial( const Vertex* aA, const Vertex* aB ) const
{
// `directions` is a bitfield where
// bit 0 = pos y
// bit 1 = neg y
// bit 2 = pos x
// bit 3 = neg x
// So, once directions = 15, we have all directions
int directions = 0;
constexpr int all_dirs = 0b1111;
// This is a failsafe in case of invalid lists. Never check
// more than the total number of points in m_vertices
size_t checked = 0;
size_t total_pts = m_vertices.size();
const Vertex* p0 = aA;
const Vertex* p = getNextOutlineVertex( p0 );
while( !same_point( p0, aB ) && checked < total_pts && directions != all_dirs )
{
double diff_x = std::abs( p->x - p0->x );
double diff_y = std::abs( p->y - p0->y );
@ -396,32 +429,16 @@ private:
wxCHECK_MSG( checked < total_pts, false, wxT( "Invalid polygon detected. Missing points to check" ) );
if( directions != 15 )
if( directions != all_dirs )
return false;
p0 = aA;
nz = p0->nextZ;
pz = p0->prevZ;
if( nz && same_point( p0, nz )
&& !( same_point( nz->prev, nz->prev->nextZ ) || same_point( nz->prev, nz->prev->prevZ ) ) )
{
p = nz->prev;
}
else if( pz && same_point( p0, pz )
&& !( same_point( pz->prev, pz->prev->nextZ ) || same_point( pz->prev, pz->prev->prevZ ) ) )
{
p = pz->prev;
}
else
{
p = p0->prev;
}
p = getPrevOutlineVertex( p0 );
directions = 0;
checked = 0;
while( p0 != aB && checked < total_pts && directions != 0b1111 )
while( !same_point( p0, aB ) && checked < total_pts && directions != all_dirs )
{
double diff_x = std::abs( p->x - p0->x );
double diff_y = std::abs( p->y - p0->y );
@ -452,7 +469,7 @@ private:
wxCHECK_MSG( checked < total_pts, false, wxT( "Invalid polygon detected. Missing points to check" ) );
return ( directions == 15 );
return ( directions == all_dirs );
}
/**
@ -564,10 +581,13 @@ private:
*/
bool locallyInside( const Vertex* a, const Vertex* b ) const
{
if( area( a->prev, a, a->next ) < 0 )
return area( a, b, a->next ) >= 0 && area( a, a->prev, b ) >= 0;
const Vertex* an = getNextOutlineVertex( a );
const Vertex* ap = getPrevOutlineVertex( a );
if( area( ap, a, an ) < 0 )
return area( a, b, an ) >= 0 && area( a, ap, b ) >= 0;
else
return area( a, b, a->prev ) < 0 || area( a, a->next, b ) < 0;
return area( a, b, ap ) < 0 || area( a, an, b ) < 0;
}
/**