diff --git a/pcbnew/class_zone.h b/pcbnew/class_zone.h index 08d1259b5f..85e2bbd0e9 100644 --- a/pcbnew/class_zone.h +++ b/pcbnew/class_zone.h @@ -347,9 +347,9 @@ public: * A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness. * all intersecting points with the horizontal infinite line and polygons to fill are calculated * a list of SEGZONE items is built, line per line - * @return number of segments created + * @return true if success, false on error */ - int FillZoneAreasWithSegments(); + bool FillZoneAreasWithSegments(); /** * Function UnFill diff --git a/pcbnew/files.cpp b/pcbnew/files.cpp index 29d6a74ee3..f3affba1c0 100644 --- a/pcbnew/files.cpp +++ b/pcbnew/files.cpp @@ -570,7 +570,7 @@ bool PCB_EDIT_FRAME::OpenProjectFiles( const std::vector& aFileSet, in // Rebuild the new pad list (for drc and ratsnet control ...) GetBoard()->m_Status_Pcb = 0; - // Update current netclass:NETCLASS::Default alwaysxists + // Select netclass Default as current netclass (it always exists) SetCurrentNetClass( NETCLASS::Default ); // Rebuild list of nets (full ratsnest rebuild) diff --git a/pcbnew/zone_filling_algorithm.cpp b/pcbnew/zone_filling_algorithm.cpp index 41589526a5..23d2a35bf3 100644 --- a/pcbnew/zone_filling_algorithm.cpp +++ b/pcbnew/zone_filling_algorithm.cpp @@ -5,8 +5,8 @@ /* * This program source code file is part of KiCad, a free EDA CAD application. * - * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr - * Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors. + * Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -32,6 +32,7 @@ #include #include #include +#include #include @@ -62,7 +63,7 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* */ if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ... - return 0; + return false; // Make a smoothed polygon out of the user-drawn polygon if required if( m_smoothedPoly ) @@ -96,7 +97,7 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* /* For copper layers, we now must add holes in the Polygon list. * holes are pads and tracks with their clearance area - * for non copper layers just recalculate the m_FilledPolysList + * For non copper layers, just recalculate the m_FilledPolysList * with m_ZoneMinThickness taken in account */ else @@ -106,18 +107,26 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* if( IsOnCopperLayer() ) { AddClearanceAreasPolygonsToPolysList_NG( aPcb ); + + if( m_FillMode ) // if fill mode uses segments, create them: + { + if( !FillZoneAreasWithSegments() ) + return false; + } } else { - int margin = m_ZoneMinThickness / 2; + m_FillMode = 0; // Fill by segments is no more used in non copper layers + // force use solid polygons (usefull only for old boards) m_FilledPolysList = ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList ); - m_FilledPolysList.Inflate( -margin, 16 ); + + // The filled areas are deflated by -m_ZoneMinThickness / 2, because + // the outlines are drawn with a line thickness = m_ZoneMinThickness to + // give a good shape with the minimal thickness + m_FilledPolysList.Inflate( -m_ZoneMinThickness / 2, 16 ); m_FilledPolysList.Fracture( SHAPE_POLY_SET::PM_FAST ); } - if( m_FillMode ) // if fill mode uses segments, create them: - FillZoneAreasWithSegments(); - m_IsFilled = true; } @@ -125,125 +134,183 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* } -// Sort function to build filled zones +// Helper sort function to fill zones by horizontal segments: +// It is used to sort intersection points by x coordinate value. static bool SortByXValues( const int& a, const int &b ) { return a < b; } +/** Helper function fillPolygonWithHorizontalSegments + * fills a polygon with horizontal segments. + * It can be used for any angle, if the zone outline to fill is rotated by this angle + * and the result is rotated by -angle + * @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill + * @param aFillSegmList = a std::vector which will be populated by filling segments + * @param aStep = the horizontal grid size + */ +bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon, + std::vector & aFillSegmList, int aStep ); -int ZONE_CONTAINER::FillZoneAreasWithSegments() +bool ZONE_CONTAINER::FillZoneAreasWithSegments() { - int count = 0; - std::vector x_coordinates; - bool error = false; - int margin = m_ZoneMinThickness * 2 / 10; - int minwidth = Mils2iu( 2 ); - margin = std::max ( minwidth, margin ); - int step = m_ZoneMinThickness - margin; - step = std::max( step, minwidth ); + bool success = true; + // segments are on something like a grid. Give it a minimal size + // to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case) + // the size is > mingrid_size. + // This is not perfect, but the actual purpose of this code + // is to allow filling zones on a grid, with grid size > m_ZoneMinThickness, + // in order to have really a grid. + // + // Using a user selectable grid size is for future Kicad versions. + // For now the area is fully filled. + int mingrid_size = Millimeter2iu( 0.05 ); + int grid_size = std::max ( mingrid_size, m_ZoneMinThickness ; + // Make segments slightly overlapping to ensure a good full filling + grid_size -= grid_size/20; - // Read all filled areas in m_FilledPolysList + // All filled areas are in m_FilledPolysList + // m_FillSegmList will contain the horizontal and vertical segments + // the segment width is m_ZoneMinThickness. m_FillSegmList.clear(); + // Creates the horizontal segments for ( int index = 0; index < m_FilledPolysList.OutlineCount(); index++ ) { - const SHAPE_LINE_CHAIN& outline = m_FilledPolysList.COutline( index ); - const BOX2I& rect = outline.BBox(); + const SHAPE_LINE_CHAIN& outline0 = m_FilledPolysList.COutline( index ); + success = fillPolygonWithHorizontalSegments( outline0, m_FillSegmList, grid_size ); - // Calculate the y limits of the zone - for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step ) - { - // find all intersection points of an infinite line with polyline sides - x_coordinates.clear(); - - for( int v = 0; v < outline.PointCount(); v++ ) - { - - int seg_startX = outline.CPoint( v ).x; - int seg_startY = outline.CPoint( v ).y; - int seg_endX = outline.CPoint( v + 1 ).x; - int seg_endY = outline.CPoint( v + 1 ).y; - - /* Trivial cases: skip if ref above or below the segment to test */ - if( ( seg_startY > refy ) && ( seg_endY > refy ) ) - continue; - - // segment below ref point, or its Y end pos on Y coordinate ref point: skip - if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) - continue; - - /* at this point refy is between seg_startY and seg_endY - * see if an horizontal line at Y = refy is intersecting this segment - */ - // calculate the x position of the intersection of this segment and the - // infinite line this is more easier if we move the X,Y axis origin to - // the segment start point: - - seg_endX -= seg_startX; - seg_endY -= seg_startY; - double newrefy = (double) ( refy - seg_startY ); - double intersec_x; - - if ( seg_endY == 0 ) // horizontal segment on the same line: skip - continue; - - // Now calculate the x intersection coordinate of the horizontal line at - // y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the - // horizontal line at the new refy position the line slope is: - // slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY - // and the x pos relative to the new origin is: - // intersec_x = refy/slope = refy * inv_slope - // Note: because horizontal segments are already tested and skipped, slope - // exists (seg_end_y not O) - double inv_slope = (double) seg_endX / seg_endY; - intersec_x = newrefy * inv_slope; - x_coordinates.push_back( (int) intersec_x + seg_startX ); - } - - // A line scan is finished: build list of segments - - // Sort intersection points by increasing x value: - // So 2 consecutive points are the ends of a segment - sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues ); - - // Create segments - - if( !error && ( x_coordinates.size() & 1 ) != 0 ) - { // An even number of coordinates is expected, because a segment has 2 ends. - // An if this algorithm always works, it must always find an even count. - wxString msg = wxT( "Fill Zone: odd number of points at y = " ); - msg << refy; - wxMessageBox( msg ); - error = true; - } - - if( error ) - break; - - int iimax = x_coordinates.size() - 1; - - for( int ii = 0; ii < iimax; ii += 2 ) - { - wxPoint seg_start, seg_end; - count++; - seg_start.x = x_coordinates[ii]; - seg_start.y = refy; - seg_end.x = x_coordinates[ii + 1]; - seg_end.y = refy; - SEGMENT segment( seg_start, seg_end ); - m_FillSegmList.push_back( segment ); - } - } //End examine segments in one area - - if( error ) + if( !success ) break; + + // Creates the vertical segments. Because the filling algo creates horizontal segments, + // to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill + // then fill them, then inverse rotate the result + SHAPE_LINE_CHAIN outline90; + outline90.Append( outline0 ); + + // Rotate 90 degrees the outline: + for( int ii = 0; ii < outline90.PointCount(); ii++ ) + { + VECTOR2I& point = outline90.Point( ii ); + std::swap( point.x, point.y ); + point.y = -point.y; + } + + int first_point = m_FillSegmList.size(); + success = fillPolygonWithHorizontalSegments( outline90, m_FillSegmList, grid_size ); + + if( !success ) + break; + + // Rotate -90 degrees the segments: + for( unsigned ii = first_point; ii < m_FillSegmList.size(); ii++ ) + { + SEGMENT& segm = m_FillSegmList[ii]; + std::swap( segm.m_Start.x, segm.m_Start.y ); + std::swap( segm.m_End.x, segm.m_End.y ); + segm.m_Start.x = - segm.m_Start.x; + segm.m_End.x = - segm.m_End.x; + } } - if( !error ) + if( success ) m_IsFilled = true; + else + m_FillSegmList.clear(); - return count; + return success; } +bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon, + std::vector & aFillSegmList, int aStep ) +{ + std::vector x_coordinates; + bool success = true; + + // Creates the horizontal segments + const SHAPE_LINE_CHAIN& outline = aPolygon; + const BOX2I& rect = outline.BBox(); + + // Calculate the y limits of the zone + for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep ) + { + // find all intersection points of an infinite line with polyline sides + x_coordinates.clear(); + + for( int v = 0; v < outline.PointCount(); v++ ) + { + + int seg_startX = outline.CPoint( v ).x; + int seg_startY = outline.CPoint( v ).y; + int seg_endX = outline.CPoint( v + 1 ).x; + int seg_endY = outline.CPoint( v + 1 ).y; + + /* Trivial cases: skip if ref above or below the segment to test */ + if( ( seg_startY > refy ) && ( seg_endY > refy ) ) + continue; + + // segment below ref point, or its Y end pos on Y coordinate ref point: skip + if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) + continue; + + /* at this point refy is between seg_startY and seg_endY + * see if an horizontal line at Y = refy is intersecting this segment + */ + // calculate the x position of the intersection of this segment and the + // infinite line this is more easier if we move the X,Y axis origin to + // the segment start point: + + seg_endX -= seg_startX; + seg_endY -= seg_startY; + double newrefy = (double) ( refy - seg_startY ); + double intersec_x; + + if ( seg_endY == 0 ) // horizontal segment on the same line: skip + continue; + + // Now calculate the x intersection coordinate of the horizontal line at + // y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the + // horizontal line at the new refy position the line slope is: + // slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY + // and the x pos relative to the new origin is: + // intersec_x = refy/slope = refy * inv_slope + // Note: because horizontal segments are already tested and skipped, slope + // exists (seg_end_y not O) + double inv_slope = (double) seg_endX / seg_endY; + intersec_x = newrefy * inv_slope; + x_coordinates.push_back( (int) intersec_x + seg_startX ); + } + + // A line scan is finished: build list of segments + + // Sort intersection points by increasing x value: + // So 2 consecutive points are the ends of a segment + sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues ); + + // An even number of coordinates is expected, because a segment has 2 ends. + // An if this algorithm always works, it must always find an even count. + if( ( x_coordinates.size() & 1 ) != 0 ) + { + success = false; + break; + } + + // Create segments having the same Y coordinate + int iimax = x_coordinates.size() - 1; + + for( int ii = 0; ii < iimax; ii += 2 ) + { + wxPoint seg_start, seg_end; + seg_start.x = x_coordinates[ii]; + seg_start.y = refy; + seg_end.x = x_coordinates[ii + 1]; + seg_end.y = refy; + SEGMENT segment( seg_start, seg_end ); + aFillSegmList.push_back( segment ); + } + } // End examine segments in one area + + return success; +}