Placing via in walkaround mode and colliding with an arc triggered an
unneeded assertion.
Also fixes the bad assertion format that did not receive strings
The fractional part of Altium schematic units is an integer number of
1/10000 mil segments, which is 2.54 nm. The internal unit of eeschema
is 10 nm, so each fractional unit in Altium is 0.254 base eeschema
units. To be consistent with
cf33cfcad1
we round to the nearest 10nm for each element
Fixes https://gitlab.com/kicad/code/kicad/issues/11742
(cherry picked from commit 6fef054c51)
Mainly CacheTriangulation() was creating triangles using partition mode.
But this mode is optimized for Pcbnew and Gerbview and different internal units.
Now CacheTriangulation() is used in no partition, much faster in GERBVIEW_PAINTER.
From Master branch
*Fixes in the SVG import polygon postprocessing:
- don't drop subsequent polys when a non-filled primitive is imported 'in between'
- fix missing holes (also related to the interleaving of stroke and filled shapes, depending on the software that wrote the SVG file)
*GRAPHICS_IMPORTER_BUFFER: forgot to store the indices of the paths belonging to a compound shape
*pcbnew: GRAPHICS_IMPORTER can now recognize multi-path shapes (and postprocess polygons with holes into Kicad-compatible fractured polysets)
*SHAPE_POLY_SET: polysets can now be built from a bunch of arbitraily ordered oriented outlines.
Used by the SVG hole support
*SVG_IMPORT_PLUGIN: enable postprocessing of polygons with degeneracy and holes
*pcbnew: SVG importer support for even-odd fill rule
Handles checking output of the arc to ensure we don't end up generating
an invalid arc. Also keeps the limit of the arc angle to be (360,360)
excluding 0.
Fixes https://gitlab.com/kicad/code/kicad/issues/10070
Clipper might mess up the rotation of the indices such that an arc can be split between
the end point and wrap around to the start point. Detect if this happened and fix it as
required.
Also, handle arcs at the last segment of the chain correctly, meaning we can have arcs
towards the end of the chain that finish at the starting point of the chain.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/9670
If the last three points of a tesselation are concave, we will never be
able to triangulate them. They were likely formed from a bad polygon,
so we will drop the triangle and return completed
Fixes https://gitlab.com/kicad/code/kicad/issues/9380
Changes a dot to be a square pixel (linewidth x linewidth). This allows
the removal of IU dependencies and ensures that a dot is always visible
on screen. Also makes sure that cairo is setting the current linewidth
during its stroke routines
Fixes https://gitlab.com/kicad/code/kicad/issues/9362
- allows setting a minimal seg count for circles and rounded end segments.
- When using ERROR_OUTSIDE, ensure the arc correction is the actual value
needed by the segment count, not the max value allowed
This ensures that the arc shapes remain correct after removing
a point belonging to an arc or inserting a point in the middle
of an arc.
Simplify implementation of Replace( ..., aP ). Now a Remove
operation followed by an Insert operation.
Improve QA test for SHAPE_LINE_CHAIN Append, Insert and Replace
Implement SHAPE_LINE_CHAIN::splitArc to break up an arc into two
Implement SHAPE_ARC::ConstructFromStartEndCenter and add qa test
m_shapes now has two possible indices. The first one is populated if
the point is associated with an arc and the second index is populated
if the point is shared between two arcs.
- Some are related to shape errors when the allowed error to approximate circle
by segment is large and arc radius small.
- fix the actual error used in ConvertToPolyline().
- Use SHAPE_ARC::DefaultAccuracyForPCB() instead of a fixed value as extra margin
in zones. It should not change something, because it is also a fixed value
(5 micrometers), but it is not a magic number.
-TransformArcToPolygon() fix some issues and add a new algo, based on the arc actual
outline shape (initial algo is still available in code, just in case).