When we add vertices to the tesselation routines, we cannot reuse these
without the original vertex points.
It may be possible to copy and modify the vertices from the hint data so
that they are properly positioned but naive attempts (moving based on
first point) did not work, so for now, we disable the hint cache when
the vertex sizes do not match as this prevents OOB access
Fixes https://gitlab.com/kicad/code/kicad/-/issues/17621
Polygon intersections happen against the original outline, not against
the currently remaining polygon. This avoids pathalogical cases
Adds new simplification system to avoid duplicated points
Adds new edge-splitting algorithm to provide additional fall-back
Verifies that polygon cuts do not swap holes for outlines (negative
area)
Fixes https://gitlab.com/kicad/code/kicad/-/issues/17559
The m_triangulationValid flag is used in several places without holding
the mutex, thus it should only ever be set when the triangulation is
guaranteed to be valid.
This can either be done by protecting both data and flag by the same
mutex, or updating the flag only after the triangulation has finished.
Also fix the case when the triangulation actually fails, the flag should
not be set in this case.
While at it, simplify the recalculation check. Only if both the
triangulation is valid, and the data hash is unchanged the recalculation
can be skipped - this is typically the case when two threads try to
update the cache concurrently, the second one will block at the mutex,
and will see the valid data after the first thread has finished.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/17180
When checking collisions, the SHAPE_POLY_SET::Collide() routine is not
const because it will regenerate the triangulation cache if it is out of
date (using a const_cast, grrr). This sidesteps the issue by assigning
a mutex to the triangulation caching
Fixes https://gitlab.com/kicad/code/kicad/-/issues/17180
1) Also reorders parameters to make sure the compiler helps out.
2) This also makes it harder to mess up the discrepency between
BOX2I/wxRECT/etc::Inflate() and SHAPE_POLY_SET::Inflate.
3) Also fixes a couple of bugs where the corner strategy was passed
in as a segCount.
4) Also fixes a couple of bugs where the error wasn't forced to the
outside to match the ERROR_LOCATION.
5) Also fixes a couple of bugs where the seg count was specified
without regard to an already passed-in max deviation
Adds QA checks to copper sliver tests. Adds the following checks:
- Dot product between two arms (quickly avoids checks for >90°)
- Checks the sliver is convex (area test)
- Eliminates minor slivers with angles that are approximately 0 and ones
with the opposite side width beneath a configurable level
- Updates Clipper2 to fix a couple of jagged edges on inflate
- Adds simplify during zone fill inflation to limit jaggies
Fixes https://gitlab.com/kicad/code/kicad/issues/14549
Rounded line ends when deflating leads to microscopic jags in the
outline that are not visible but add substantial computation time and
minor error when computing polygon offsets.
Instead, the chamfer deflate method prevents these jagged lines by
clipping angles < 90° by the error level. This does not impact deflate
calls where we explicitly require the angles to be maintained
For unknown reasons, Clipper2 only returns Paths structures from the
ClipperOffset::Execute routine. Further, the Paths are not properly
ordered (outline->hole in outline, outline2->hole in outline2).
To get proper hierarchy, we need to run an additional pass of the
solution with the paths as Subject in a null union. This is effectively
a Simplify() call but we keep the data in Clipper format to reduce the
churn/calc time
In Clipper1, we had a flat tree structure on returns. Clipper2 nests
these, so we need to properly handle the nesting structure when
importing the polygons
Currently this lives behind the advanced config flag `UseClipper2`.
Enabling this flag will route all Clipper-based calls through the
Clipper2 library instead of the older Clipper. The changes should be
mostly transparent.
Of note, Clipper2 does not utilize the `STRICTLY_SIMPLE` flag because
clipper1 did not actually guarantee a strictly simple polygon.
Currently we ignore this flag but we may decide to run strictly-simple
operations through a second NULL union to simplify the results as much
as possible.
Additionally, the inflation options are slightly different. We cannot
choose the fallback miter. The fallback miter is always square. This
only affects the CHAMFER_ACUTE_CORNERS option in inflate, which does not
appear to be used.
Lastly, we currently utilize the 64-bit integer coordinates for
calculations. This appears to still be faster than 32-bit calculations
in Clipper1 on a modern x86 system. This may not be the case for older
systems, particularly 32-bit systems.
In addition to showing resolved clearance, we also show the calculated
clearance in the same method as is used for DRC. This will allow users
to better examine their system while working.
Fixes https://gitlab.com/kicad/code/kicad/issues/7934
Mainly CacheTriangulation() was creating triangles using partition mode.
But this mode is optimized for Pcbnew and Gerbview and different internal units.
Now CacheTriangulation() is used in no partition, much faster in GERBVIEW_PAINTER.
Fixes#11549https://gitlab.com/kicad/code/kicad/issues/11549
1) Generate SHAPE_POLY_SET triangulation by outline so they can be
shared between connectivity system and other clients.
2) Don't add items to connectivity when reading board; we're going
to do a total rebuild anyway.
3) Use multithreading when caching triangulation.