*$ * OPA1641 ************************************************************************************************* * (C) Copyright 2018 Texas Instruments Incorporated. All rights reserved. ************************************************************************************************* ** This model is designed as an aid for customers of Texas Instruments. ** TI and its licensors and suppliers make no warranties, either expressed ** or implied, with respect to this model, including the warranties of ** merchantability or fitness for a particular purpose. The model is ** provided solely on an "as is" basis. The entire risk as to its quality ** and performance is with the customer ************************************************************************************************* * * This model is subject to change without notice. Texas Instruments * Incorporated is not responsible for updating this model. * ************************************************************************************************* * ** Released by: Online Design Tools, Texas Instruments Inc. * Part: OPA1641 * Date: 08FEB2019 * Model Type: Generic (suitable for all analysis types) * EVM Order Number: N/A * EVM Users Guide: N/A * Datasheet: SBOS484D -DECEMBER 2009-REVISED APRIL 2016 * Created with Green-Williams-Lis Op Amp Macro-model Architecture * * Model Version: Final 1.1 * ***************************************************************************** * * Updates: * * Final 1.1 * Added Unique subckt name, removed Claw ABS. * Simplified subckt for current noise. * * Final 1.0 * Release to Web. * **************************************************************************** * Model Usage Notes: * 1. The following parameters are modeled: * OPEN-LOOP GAIN AND PHASE VS. FREQUENCY WITH RL, CL EFFECTS (Aol) * UNITY GAIN BANDWIDTH (GBW) * INPUT COMMON-MODE REJECTION RATIO VS. FREQUENCY (CMRR) * POWER SUPPLY REJECTION RATIO VS. FREQUENCY (PSRR) * DIFFERENTIAL INPUT IMPEDANCE (Zid) * COMMON-MODE INPUT IMPEDANCE (Zic) * OPEN-LOOP OUTPUT IMPEDANCE VS. FREQUENCY (Zo) * OUTPUT CURRENT THROUGH THE SUPPLY (Iout) * INPUT VOLTAGE NOISE DENSITY VS. FREQUENCY (en) * INPUT CURRENT NOISE DENSITY VS. FREQUENCY (in) * OUTPUT VOLTAGE SWING vs. OUTPUT CURRENT (Vo) * SHORT-CIRCUIT OUTPUT CURRENT (Isc) * QUIESCENT CURRENT (Iq) * SETTLING TIME VS. CAPACITIVE LOAD (ts) * SLEW RATE (SR) * SMALL SIGNAL OVERSHOOT VS. CAPACITIVE LOAD * LARGE SIGNAL RESPONSE * OVERLOAD RECOVERY TIME (tor) * INPUT BIAS CURRENT (Ib) * INPUT OFFSET CURRENT (Ios) * INPUT OFFSET VOLTAGE (Vos) * INPUT COMMON-MODE VOLTAGE RANGE (Vcm) * INPUT OFFSET VOLTAGE VS. INPUT COMMON-MODE VOLTAGE (Vos vs. Vcm) * INPUT/OUTPUT ESD CELLS (ESDin, ESDout) * 2. Model represent the device operating at room temperature only. No temperature dependency is modeled ****************************************************** .subckt OPA1641 IN+ IN- VCC VEE OUT ****************************************************** .model R_NOISELESS RES (TCE=0 T_ABS=-273.15) ****************************************************** I_OS ESDn MID 4e-12 I_B 30 MID 2e-12 V_GRp 45 MID 56 V_GRn 46 MID -55 V_ISCp 39 MID 36.5994 V_ISCn 40 MID -28.98 V_ORn 38 VCLP -11.9328 V11 44 37 0 V_ORp 36 VCLP 11.8605 V12 43 35 0 V4 27 OUT 0 VCM_MIN 67 VEE_B -0.1 VCM_MAX 68 VCC_B -3.5 I_Q VCC VEE 0.0018 V_OS 75 30 0.000995 XU5 ESDp ESDn VCC VEE ESD_0_OPA1641 XU4 19 ESDp MID PSRR_CMRR_0_OPA1641 XU3 20 VEE_B MID PSRR_CMRR_1_OPA1641 XU2 21 VCC_B MID PSRR_CMRR_2_OPA1641 XU1 23 22 CLAMP VSENSE CLAW_CLAMP CL_CLAMP 24 26 27 MID AOL_ZO_0_OPA1641 C28 31 MID 1P R77 32 31 R_NOISELESS 100 C27 33 MID 1P R76 34 33 R_NOISELESS 100 R75 MID 35 R_NOISELESS 1 GVCCS8 35 MID 36 MID -1 R74 37 MID R_NOISELESS 1 GVCCS7 37 MID 38 MID -1 Xi_nn ESDn MID FEMT_0_OPA1641 Xi_np MID 30 FEMT_0_OPA1641 Xe_n ESDp 30 VNSE_0_OPA1641 XIQPos VIMON MID MID VCC VCCS_LIMIT_IQ_0_OPA1641 XIQNeg MID VIMON VEE MID VCCS_LIMIT_IQ_0_OPA1641 C_DIFF ESDp ESDn 8e-12 XCL_AMP 39 40 VIMON MID 41 42 CLAMP_AMP_LO_0_OPA1641 SOR_SWp CLAMP 43 CLAMP 43 S_VSWITCH_1 SOR_SWn 44 CLAMP 44 CLAMP S_VSWITCH_1 XGR_AMP 45 46 47 MID 48 49 CLAMP_AMP_HI_0_OPA1641 R39 45 MID R_NOISELESS 1T R37 46 MID R_NOISELESS 1T R42 VSENSE 47 R_NOISELESS 1M C19 47 MID 1F R38 48 MID R_NOISELESS 1 R36 MID 49 R_NOISELESS 1 R40 48 50 R_NOISELESS 1M R41 49 51 R_NOISELESS 1M C17 50 MID 1F C18 MID 51 1F XGR_SRC 50 51 CLAMP MID VCCS_LIM_GR_0_OPA1641 R21 41 MID R_NOISELESS 1 R20 MID 42 R_NOISELESS 1 R29 41 52 R_NOISELESS 1M R30 42 53 R_NOISELESS 1M C9 52 MID 1F C8 MID 53 1F XCL_SRC 52 53 CL_CLAMP MID VCCS_LIM_4_0_OPA1641 R22 39 MID R_NOISELESS 1T R19 MID 40 R_NOISELESS 1T XCLAWp VIMON MID 54 VCC_B VCCS_LIM_CLAW+_0_OPA1641 XCLAWn MID VIMON VEE_B 55 VCCS_LIM_CLAW-_0_OPA1641 R12 54 VCC_B R_NOISELESS 1K R16 54 56 R_NOISELESS 1M R13 VEE_B 55 R_NOISELESS 1K R17 57 55 R_NOISELESS 1M C6 57 MID 1F C5 MID 56 1F G2 VCC_CLP MID 56 MID -1M R15 VCC_CLP MID R_NOISELESS 1K G3 VEE_CLP MID 57 MID -1M R14 MID VEE_CLP R_NOISELESS 1K XCLAW_AMP VCC_CLP VEE_CLP VOUT_S MID 58 59 CLAMP_AMP_LO_0_OPA1641 R26 VCC_CLP MID R_NOISELESS 1T R23 VEE_CLP MID R_NOISELESS 1T R25 58 MID R_NOISELESS 1 R24 MID 59 R_NOISELESS 1 R27 58 60 R_NOISELESS 1M R28 59 61 R_NOISELESS 1M C11 60 MID 1F C10 MID 61 1F XCLAW_SRC 60 61 CLAW_CLAMP MID VCCS_LIM_3_0_OPA1641 H2 34 MID V11 -1 H3 32 MID V12 1 C12 SW_OL MID 100P R32 62 SW_OL R_NOISELESS 100 R31 62 MID R_NOISELESS 1 XOL_SENSE MID 62 33 31 OL_SENSE_0_OPA1641 S1 24 26 SW_OL MID S_VSWITCH_3 H1 63 MID V4 1K S7 VEE OUT VEE OUT S_VSWITCH_4 S6 OUT VCC OUT VCC S_VSWITCH_4 R11 MID 64 R_NOISELESS 1T R18 64 VOUT_S R_NOISELESS 100 C7 VOUT_S MID 1N E5 64 MID OUT MID 1 C13 VIMON MID 1N R33 63 VIMON R_NOISELESS 100 R10 MID 63 R_NOISELESS 1T R47 65 VCLP R_NOISELESS 100 C24 VCLP MID 100P E4 65 MID CL_CLAMP MID 1 C4 23 MID 1F R9 23 66 R_NOISELESS 1M R7 MID 67 R_NOISELESS 1T R6 68 MID R_NOISELESS 1T R8 MID 66 R_NOISELESS 1 XVCM_CLAMP 69 MID 66 MID 68 67 VCCS_EXT_LIM_0_OPA1641 E1 MID 0 70 0 1 R89 VEE_B 0 R_NOISELESS 1 R5 71 VEE_B R_NOISELESS 1M C3 71 0 1F R60 70 71 R_NOISELESS 1MEG C1 70 0 1 R3 70 0 R_NOISELESS 1T R59 72 70 R_NOISELESS 1MEG C2 72 0 1F R4 VCC_B 72 R_NOISELESS 1M R88 VCC_B 0 R_NOISELESS 1 G17 VEE_B 0 VEE 0 -1 G16 VCC_B 0 VCC 0 -1 R_PSR 73 69 R_NOISELESS 1K G_PSR 69 73 21 20 -1M R2 22 ESDn R_NOISELESS 1M R1 73 74 R_NOISELESS 1M R_CMR 75 74 R_NOISELESS 1K G_CMR 74 75 19 MID -1M C_CMn ESDn MID 6e-12 C_CMp MID ESDp 6e-12 R53 ESDn MID R_NOISELESS 1T R52 MID ESDp R_NOISELESS 1T R35 IN- ESDn R_NOISELESS 10M R34 IN+ ESDp R_NOISELESS 10M .MODEL S_VSWITCH_1 VSWITCH (RON=10e-3 ROFF=1e9 VON=10e-3 VOFF=0) .MODEL S_VSWITCH_3 VSWITCH (RON=1e-3 ROFF=1e9 VON=900e-3 VOFF=800e-3) .MODEL S_VSWITCH_4 VSWITCH (RON=50 ROFF=1e12 VON=500e-3 VOFF=450e-3) .ENDS OPA1641 * .SUBCKT ESD_0_OPA1641 ESDp ESDn VCC VEE S2 ESDn VCC ESDn VCC S_VSWITCH_1 S4 VEE ESDn VEE ESDn S_VSWITCH_1 S3 ESDp VCC ESDp VCC S_VSWITCH_1 S5 VEE ESDp VEE ESDp S_VSWITCH_1 .MODEL S_VSWITCH_1 VSWITCH (RON=50 ROFF=1e12 VON=500e-3 VOFF=450e-3) .ENDS * .SUBCKT PSRR_CMRR_0_OPA1641 psrr_in psrr_vccb mid .model R_NOISELESS RES ( TCE=0 T_ABS=-273.15) R74 mid psrr_in R_NOISELESS 1 G_2 psrr_in mid 4 mid -36.1316 R2b mid 4 R_NOISELESS 2846443.8473 C2a 4 5 1.0178e-14 R73 5 4 R_NOISELESS 100MEG R49 mid 5 R_NOISELESS 1 GVCCS7 5 mid 6 mid -1 R2a mid 6 R_NOISELESS 11367.1456 C1a 6 7 2.2769e-12 R48 7 6 R_NOISELESS 100MEG G_1 7 mid psrr_vccb mid -0.0021692 Rsrc mid 7 R_NOISELESS 1 .ENDS * .SUBCKT PSRR_CMRR_1_OPA1641 psrr_in psrr_vccb psrr_mid .model R_NOISELESS RES ( TCE=0 T_ABS=-273.15) R80 psrr_mid psrr_in R_NOISELESS 33.3333 C27 psrr_in 4 1.5915e-09 R79 4 psrr_in R_NOISELESS 100MEG GVCCS8 4 psrr_mid psrr_vccb psrr_mid -0.13345 R78 psrr_mid 4 R_NOISELESS 1 .ENDS * .SUBCKT PSRR_CMRR_2_OPA1641 psrr_in psrr_vccb psrr_mid .model R_NOISELESS RES ( TCE=0 T_ABS=-273.15) R80 psrr_mid psrr_in R_NOISELESS 45.5638 C27 psrr_in 4 1.5877e-09 R79 4 psrr_in R_NOISELESS 100MEG GVCCS8 4 psrr_mid psrr_vccb psrr_mid -0.30495 R78 psrr_mid 4 R_NOISELESS 1 .ENDS * .SUBCKT VCCS_LIM_2_0_OPA1641 VC+ VC- IOUT+ IOUT- .PARAM GAIN = 0.021535 .PARAM IPOS = 0.6168 .PARAM INEG = -0.6168 G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)} .ENDS * .SUBCKT VCCS_LIM_1_0_OPA1641 VC+ VC- IOUT+ IOUT- .PARAM GAIN = 1E-4 .PARAM IPOS = .5 .PARAM INEG = -.5 G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)} .ENDS * .SUBCKT AOL_ZO_0_OPA1641 AOL_INP AOL_INN CLAMP VSENSE CLAW_CLAMP CL_CLAMP ZO_CLEFT ZO_CRIGHT ZO_OUT MID .MODEL R_NOISELESS RES ( TCE=0 T_ABS=-273.15) C1_A0 CLAMP MID 3.034e-08 R4_A0 MID CLAMP R_NOISELESS 1MEG XVCCS_LIM_2_A0 4_A0 MID MID CLAMP VCCS_LIM_2_0_OPA1641 R3_A0 MID 4_A0 R_NOISELESS 1MEG XVCCS_LIM_1_A0 AOL_INP AOL_INN MID 4_A0 VCCS_LIM_1_0_OPA1641 R4_VS VSENSE MID R_NOISELESS 1K GVCCS4_VS VSENSE MID CLAMP MID -1M C2_A2 out2 MID 6.6315e-14 R3_A2 out2 MID R_NOISELESS 1MEG GVCCS3_A2 out2 MID VSENSE MID -1U C3_A3 4_A3 out3 4.9379e-12 GVCCS4_A3 4_A3 MID out2 MID -639.8821 R4_A3 4_A3 MID R_NOISELESS 1 R5_A3 out3 4_A3 R_NOISELESS 10K R6_A3 out3 MID R_NOISELESS 15.6523 C2_A4 out4 MID 1.0015e-15 R3_A4 out4 MID R_NOISELESS 1MEG GVCCS3_A4 out4 MID out3 MID -1U C2_A5 out5 MID 8.1759e-16 R3_A5 out5 MID R_NOISELESS 1MEG GVCCS3_A5 out5 MID out4 MID -1U C2_A6 out6 MID 8.1759e-16 R3_A6 out6 MID R_NOISELESS 1MEG GVCCS3_A6 out6 MID out5 MID -1U C2_A7 out7 MID 8.1759e-16 R3_A7 out7 MID R_NOISELESS 1MEG GVCCS3_A7 out7 MID out6 MID -1U C2_A8 out8 MID 2.8937e-16 R3_A8 out8 MID R_NOISELESS 1MEG GVCCS3_A8 out8 MID out7 MID -1U R4_CC CLAW_CLAMP MID R_NOISELESS 1K GVCCS4_CC CLAW_CLAMP MID out8 MID -1M R4_CL CL_CLAMP MID R_NOISELESS 1K GVCCS4_CL CL_CLAMP MID CLAW_CLAMP MID -1M G_Aol_Zo Zo_Cleft MID CL_CLAMP ZO_OUT -89.0517 GVCCS1_1 outz1 MID Zo_Cright MID -83.6706 C1_1 Zo_Cleft Zo_Cright 9.5519e-06 R2_1 Zo_Cright MID R_NOISELESS 120.9619 R1_1 Zo_Cright Zo_Cleft R_NOISELESS 10K Rdc_1 Zo_Cleft MID R_NOISELESS 1 GVCCS2_2 outz2 MID net2 MID -1 C2_2 5_2 MID 3.9653e-12 R5_2 net2 5_2 R_NOISELESS 10K R4_2 net2 outz1 R_NOISELESS 165044.5518 R7_2 outz1 MID R_NOISELESS 1 R1_3 2_3 MID R_NOISELESS 1 R11_3 5_3 MID R_NOISELESS 6.7534 C4_3 5_3 outz2 1.6422e-13 R10_3 5_3 outz2 R_NOISELESS 10K XVCVS_LIM_1 5_3 MID MID 2_3 VCCS_LIM_ZO_0_OPA1641 R9_3 outz2 MID R_NOISELESS 1 Rdummy MID ZO_OUT R_NOISELESS 1584.893 Rx ZO_OUT 2_3 R_NOISELESS 15848.93 .ENDS * .SUBCKT VCCS_LIM_ZO_0_OPA1641 VC+ VC- IOUT+ IOUT- .PARAM GAIN = 1481.7407 .PARAM IPOS = 1160.123E3 .PARAM INEG = -918.604E3 G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)} .ENDS * .SUBCKT FEMT_0_OPA1641 1 2 .PARAM NVRF=0.8 .PARAM RNVF={1.184*PWR(NVRF,2)} E1 3 0 5 0 10 R1 5 0 {RNVF} R2 5 0 {RNVF} G1 1 2 3 0 1E-6 .ENDS * .SUBCKT VNSE_0_OPA1641 1 2 .PARAM FLW=0.1 .PARAM NLF=46.4919 .PARAM NVR=5.0539 .PARAM GLF={PWR(FLW,0.25)*NLF/1164} .PARAM RNV={1.184*PWR(NVR,2)} .MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVN E1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9 E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 .ENDS * .SUBCKT VCCS_LIMIT_IQ_0_OPA1641 VC+ VC- IOUT+ IOUT- .PARAM GAIN = 1E-3 G1 IOUT- IOUT+ VALUE={IF( (V(VC+,VC-)<=0),0,GAIN*V(VC+,VC-) )} .ENDS * .SUBCKT CLAMP_AMP_LO_0_OPA1641 VC+ VC- VIN COM VO+ VO- .PARAM G=1 GVO+ COM VO+ VALUE = {IF(V(VIN,COM)>V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)} GVO- COM VO- VALUE = {IF(V(VIN,COM)V(VC+,COM),((V(VIN,COM)-V(VC+,COM))*G),0)} GVO- COM VO- VALUE = {IF(V(VIN,COM)10E-3 | V(OLP,COM)>10E-3),1,0)} .ENDS * .SUBCKT VCCS_EXT_LIM_0_OPA1641 VIN+ VIN- IOUT- IOUT+ VP+ VP- .PARAM GAIN = 1 G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VIN+,VIN-),V(VP-,VIN-), V(VP+,VIN-))} .ENDS *