/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 KiCad Developers, see AUTHORS.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef GEOM_TEST_UTILS_H #define GEOM_TEST_UTILS_H #include #include #include #include #include #include /** * @brief Utility functions for testing geometry functions. */ namespace GEOM_TEST { /** * @brief Geometric quadrants, from top-right, anti-clockwise * * ^ y * | * Q2 | Q1 * -------> x * Q3 | Q4 */ enum class QUADRANT { Q1, Q2, Q3, Q4 }; /* * @brief Check value in Quadrant 1 (x and y both >= 0) */ template bool IsInQuadrant( const VECTOR2& aPoint, QUADRANT aQuadrant ) { bool isInQuad = false; switch( aQuadrant ) { case QUADRANT::Q1: isInQuad = aPoint.x >= 0 && aPoint.y >= 0; break; case QUADRANT::Q2: isInQuad = aPoint.x <= 0 && aPoint.y >= 0; break; case QUADRANT::Q3: isInQuad = aPoint.x <= 0 && aPoint.y <= 0; break; case QUADRANT::Q4: isInQuad = aPoint.x >= 0 && aPoint.y <= 0; break; } return isInQuad; } /* * @Brief Check if both ends of a segment are in Quadrant 1 */ inline bool SegmentCompletelyInQuadrant( const SEG& aSeg, QUADRANT aQuadrant ) { return IsInQuadrant( aSeg.A, aQuadrant) && IsInQuadrant( aSeg.B, aQuadrant ); } /* * @brief Check if at least one end of the segment is in Quadrant 1 */ inline bool SegmentEndsInQuadrant( const SEG& aSeg, QUADRANT aQuadrant ) { return IsInQuadrant( aSeg.A, aQuadrant ) || IsInQuadrant( aSeg.B, aQuadrant ); } /* * @brief Check if a segment is entirely within a certain radius of a point. */ inline bool SegmentCompletelyWithinRadius( const SEG& aSeg, const VECTOR2I& aPt, const int aRadius ) { // This is true iff both ends of the segment are within the radius return ( ( aSeg.A - aPt ).EuclideanNorm() < aRadius ) && ( ( aSeg.B - aPt ).EuclideanNorm() < aRadius ); } /** * Check that two points are the given distance apart, within the given tolerance. * * @tparam T the dimension type * @param aPtA the first point * @param aPtB the second point * @param aExpDist the expected distance * @param aTol the permitted tolerance */ template bool IsPointAtDistance( const VECTOR2& aPtA, const VECTOR2& aPtB, T aExpDist, T aTol ) { const int dist = ( aPtB - aPtA ).EuclideanNorm(); const bool ok = KI_TEST::IsWithin( dist, aExpDist, aTol ); if( !ok ) { BOOST_TEST_INFO( "Points not at expected distance: distance is " << dist << ", expected " << aExpDist ); } return ok; } /** * Predicate for checking a set of points is within a certain tolerance of * a circle * @param aPoints the points to check * @param aCentre the circle centre * @param aRad the circle radius * @param aTolEnds the tolerance for the endpoint-centre distance * @return true if predicate met */ template bool ArePointsNearCircle( const std::vector>& aPoints, const VECTOR2& aCentre, T aRad, T aTol ) { bool ok = true; for( unsigned i = 0; i < aPoints.size(); ++i ) { if( !IsPointAtDistance( aPoints[i], aCentre, aRad, aTol ) ) { BOOST_TEST_INFO( "Point " << i << " " << aPoints[i] << " is not within tolerance (" << aTol << ") of radius (" << aRad << ") from centre point " << aCentre ); ok = false; } } return ok; } /* * @brief Check if two vectors are perpendicular * * @param a: vector A * @param b: vector B * @param aTolerance: the allowed deviation from PI/2 (e.g. when rounding) */ template bool ArePerpendicular( const VECTOR2& a, const VECTOR2& b, const EDA_ANGLE& aTolerance ) { EDA_ANGLE angle = std::abs( EDA_ANGLE( a ) - EDA_ANGLE( b ) ); // Normalise: angles of 3*pi/2 are also perpendicular if (angle > ANGLE_180) angle -= ANGLE_180; return KI_TEST::IsWithin( angle.AsRadians(), ANGLE_90.AsRadians(), aTolerance.AsRadians() ); } /** * @brief construct a square polygon of given size width and centre * * @param aSize: the side width (must be divisible by 2 if want to avoid rounding) * @param aCentre: the centre of the square */ inline SHAPE_LINE_CHAIN MakeSquarePolyLine( int aSize, const VECTOR2I& aCentre ) { SHAPE_LINE_CHAIN polyLine; const VECTOR2I corner = aCentre + aSize / 2; polyLine.Append( VECTOR2I( corner.x, corner.y ) ); polyLine.Append( VECTOR2I( -corner.x, corner.y ) ) ; polyLine.Append( VECTOR2I( -corner.x, -corner.y ) ); polyLine.Append( VECTOR2I( corner.x, -corner.y ) ); polyLine.SetClosed( true ); return polyLine; } /* * @brief Fillet every polygon in a set and return a new set */ inline SHAPE_POLY_SET FilletPolySet( SHAPE_POLY_SET& aPolySet, int aRadius, int aError ) { SHAPE_POLY_SET filletedPolySet; for ( int i = 0; i < aPolySet.OutlineCount(); ++i ) { const auto filleted = aPolySet.FilletPolygon( aRadius, aError, i ); filletedPolySet.AddOutline( filleted[0] ); } return filletedPolySet; } /** * Verify that a SHAPE_LINE_CHAIN has been assembled correctly by ensuring that the * arc start and end points match points on the chain and that any points inside the arcs * actually collide with the arc segments (with an error margin of 5000 IU) * * @param aChain to test * @return true if outline is valid */ inline bool IsOutlineValid( const SHAPE_LINE_CHAIN& aChain ) { ssize_t prevArcIdx = -1; std::set testedArcs; if( aChain.PointCount() > 0 && !aChain.IsClosed() && aChain.IsSharedPt( 0 ) ) return false; //can't have first point being shared on an open chain for( int i = 0; i < aChain.PointCount(); i++ ) { ssize_t arcIdx = aChain.ArcIndex( i ); if( arcIdx >= 0 ) { // Point on arc, lets make sure it collides with the arc shape and we haven't // previously seen the same arc index if( prevArcIdx != arcIdx && testedArcs.count( arcIdx ) ) return false; // we've already seen this arc before, not contiguous if( !aChain.Arc( arcIdx ).Collide( aChain.CPoint( i ), SHAPE_ARC::DefaultAccuracyForPCB() ) ) { return false; } testedArcs.insert( arcIdx ); } if( prevArcIdx != arcIdx ) { // we have changed arc shapes, run a few extra tests if( prevArcIdx >= 0 ) { // prev point on arc, test that the last arc point on the chain // matches the end point of the arc VECTOR2I pointToTest = aChain.CPoint( i ); if( !aChain.IsSharedPt( i ) ) pointToTest = aChain.CPoint( i - 1 ); SHAPE_ARC lastArc = aChain.Arc( prevArcIdx ); if( lastArc.GetP1() != pointToTest ) return false; } if( arcIdx >= 0 ) { // new arc, test that the start point of the arc matches the point on the chain VECTOR2I pointToTest = aChain.CPoint( i ); SHAPE_ARC currentArc = aChain.Arc( arcIdx ); if( currentArc.GetP0() != pointToTest ) return false; } } prevArcIdx = arcIdx; } // Make sure last arc point matches the end of the arc if( prevArcIdx >= 0 ) { if( aChain.IsClosed() && aChain.IsSharedPt( 0 ) ) { if( aChain.CShapes()[0].first != prevArcIdx ) return false; if( aChain.Arc( prevArcIdx ).GetP1() != aChain.CPoint( 0 ) ) return false; } else { if( aChain.Arc( prevArcIdx ).GetP1() != aChain.CPoint( -1 ) ) return false; } } return true; } /** * Verify that a SHAPE_POLY_SET has been assembled correctly by verifying each of the outlines * and holes contained within * * @param aSet to test * @return true if the poly set is valid */ inline bool IsPolySetValid( const SHAPE_POLY_SET& aSet ) { for( int i = 0; i < aSet.OutlineCount(); i++ ) { if( !IsOutlineValid( aSet.Outline( i ) ) ) return false; for( int j = 0; j < aSet.HoleCount( i ); j++ ) { if( !IsOutlineValid( aSet.CHole( i, j ) ) ) return false; } } return true; } /** * @brief Check that two SEGs have the same end points, in either order * * That is to say SEG(A, B) == SEG(A, B), but also SEG(A, B) == SEG(B, A) */ inline bool SegmentsHaveSameEndPoints( const SEG& aSeg1, const SEG& aSeg2 ) { return ( aSeg1.A == aSeg2.A && aSeg1.B == aSeg2.B ) || ( aSeg1.A == aSeg2.B && aSeg1.B == aSeg2.A ); } } // namespace GEOM_TEST namespace BOOST_TEST_PRINT_NAMESPACE_OPEN { template <> struct print_log_value { inline void operator()( std::ostream& os, const SHAPE_LINE_CHAIN& c ) { os << "SHAPE_LINE_CHAIN: " << c.PointCount() << " points: [\n"; for( int i = 0; i < c.PointCount(); ++i ) { os << " " << i << ": " << c.CPoint( i ) << "\n"; } os << "]"; } }; } BOOST_TEST_PRINT_NAMESPACE_CLOSE #endif // GEOM_TEST_UTILS_H