/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file routing_matrix.cpp * @brief Functions to create autorouting maps */ #include #include #include #include #include #include #include #include #include #include #include #include MATRIX_ROUTING_HEAD::MATRIX_ROUTING_HEAD() { m_BoardSide[0] = m_BoardSide[1] = NULL; m_DistSide[0] = m_DistSide[1] = NULL; m_DirSide[0] = m_DirSide[1] = NULL; m_InitMatrixDone = false; m_Nrows = m_Ncols = 0; m_MemSize = 0; m_RoutingLayersCount = 1; } MATRIX_ROUTING_HEAD::~MATRIX_ROUTING_HEAD() { } bool MATRIX_ROUTING_HEAD::ComputeMatrixSize( BOARD* aPcb, bool aUseBoardEdgesOnly ) { aPcb->ComputeBoundingBox( aUseBoardEdgesOnly ); // The boundary box must have its start point on routing grid: m_BrdBox = aPcb->GetBoundingBox(); m_BrdBox.SetX( m_BrdBox.GetX() - ( m_BrdBox.GetX() % m_GridRouting ) ); m_BrdBox.SetY( m_BrdBox.GetY() - ( m_BrdBox.GetY() % m_GridRouting ) ); // The boundary box must have its end point on routing grid: wxPoint end = m_BrdBox.GetEnd(); end.x -= end.x % m_GridRouting; end.x += m_GridRouting; end.y -= end.y % m_GridRouting; end.y += m_GridRouting; m_BrdBox.SetEnd( end ); aPcb->SetBoundingBox( m_BrdBox ); m_Nrows = m_BrdBox.GetHeight() / m_GridRouting; m_Ncols = m_BrdBox.GetWidth() / m_GridRouting; // gives a small margin m_Ncols += 1; m_Nrows += 1; return true; } int MATRIX_ROUTING_HEAD::InitRoutingMatrix() { if( m_Nrows <= 0 || m_Ncols <= 0 ) return 0; m_InitMatrixDone = true; // we have been called // give a small margin for memory allocation: int ii = (RoutingMatrix.m_Nrows + 1) * (RoutingMatrix.m_Ncols + 1); int side = BOTTOM; for( int jj = 0; jj < m_RoutingLayersCount; jj++ ) // m_RoutingLayersCount = 1 or 2 { m_BoardSide[side] = NULL; m_DistSide[side] = NULL; m_DirSide[side] = NULL; /* allocate matrix & initialize everything to empty */ m_BoardSide[side] = (MATRIX_CELL*) operator new( ii * sizeof(MATRIX_CELL) ); memset( m_BoardSide[side], 0, ii * sizeof(MATRIX_CELL) ); if( m_BoardSide[side] == NULL ) return -1; // allocate Distances m_DistSide[side] = (DIST_CELL*) operator new( ii * sizeof(DIST_CELL) ); memset( m_DistSide[side], 0, ii * sizeof(DIST_CELL) ); if( m_DistSide[side] == NULL ) return -1; // allocate Dir (chars) m_DirSide[side] = (char*) operator new( ii ); memset( m_DirSide[side], 0, ii ); if( m_DirSide[side] == NULL ) return -1; side = TOP; } m_MemSize = m_RouteCount * ii * ( sizeof(MATRIX_CELL) + sizeof(DIST_CELL) + sizeof(char) ); return m_MemSize; } void MATRIX_ROUTING_HEAD::UnInitRoutingMatrix() { int ii; m_InitMatrixDone = false; for( ii = 0; ii < MAX_ROUTING_LAYERS_COUNT; ii++ ) { // de-allocate Dir matrix if( m_DirSide[ii] ) { delete m_DirSide[ii]; m_DirSide[ii] = NULL; } // de-allocate Distances matrix if( m_DistSide[ii] ) { delete m_DistSide[ii]; m_DistSide[ii] = NULL; } // de-allocate cells matrix if( m_BoardSide[ii] ) { delete m_BoardSide[ii]; m_BoardSide[ii] = NULL; } } m_Nrows = m_Ncols = 0; } /** * Function PlaceCells * Initialize the matrix routing by setting obstacles for each occupied cell * a cell set to HOLE is an obstacle for tracks and vias * a cell set to VIA_IMPOSSIBLE is an obstacle for vias only. * a cell set to CELL_is_EDGE is a frontier. * Tracks and vias having the same net code as net_code are skipped * (htey do not are obstacles) * * For single-sided Routing 1: * BOTTOM side is used, and Route_Layer_BOTTOM = Route_Layer_TOP * * If flag == FORCE_PADS: all pads will be put in matrix as obstacles. */ void PlaceCells( BOARD* aPcb, int net_code, int flag ) { int ux0 = 0, uy0 = 0, ux1, uy1, dx, dy; int marge, via_marge; LAYER_MSK layerMask; // use the default NETCLASS? NETCLASS* nc = aPcb->m_NetClasses.GetDefault(); int trackWidth = nc->GetTrackWidth(); int clearance = nc->GetClearance(); int viaSize = nc->GetViaDiameter(); marge = clearance + (trackWidth / 2); via_marge = clearance + (viaSize / 2); // Place PADS on matrix routing: for( unsigned i = 0; i < aPcb->GetPadCount(); ++i ) { D_PAD* pad = aPcb->GetPad( i ); if( net_code != pad->GetNet() || (flag & FORCE_PADS) ) { ::PlacePad( pad, HOLE, marge, WRITE_CELL ); } ::PlacePad( pad, VIA_IMPOSSIBLE, via_marge, WRITE_OR_CELL ); } // Place outlines of modules on matrix routing, if they are on a copper layer // or on the edge layer TRACK tmpSegm( NULL ); // A dummy track used to create segments. for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) { for( BOARD_ITEM* item = module->GraphicalItems(); item; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_EDGE_T: { EDGE_MODULE* edge = (EDGE_MODULE*) item; tmpSegm.SetLayer( edge->GetLayer() ); if( tmpSegm.GetLayer() == EDGE_N ) tmpSegm.SetLayer( UNDEFINED_LAYER ); tmpSegm.SetStart( edge->GetStart() ); tmpSegm.SetEnd( edge->GetEnd() ); tmpSegm.SetShape( edge->GetShape() ); tmpSegm.SetWidth( edge->GetWidth() ); tmpSegm.m_Param = edge->GetAngle(); tmpSegm.SetNet( -1 ); TraceSegmentPcb( &tmpSegm, HOLE, marge, WRITE_CELL ); TraceSegmentPcb( &tmpSegm, VIA_IMPOSSIBLE, via_marge, WRITE_OR_CELL ); } break; default: break; } } } // Place board outlines and texts on copper layers: for( BOARD_ITEM* item = aPcb->m_Drawings; item; item = item->Next() ) { switch( item->Type() ) { case PCB_LINE_T: { DRAWSEGMENT* DrawSegm; int type_cell = HOLE; DrawSegm = (DRAWSEGMENT*) item; tmpSegm.SetLayer( DrawSegm->GetLayer() ); if( DrawSegm->GetLayer() == EDGE_N ) { tmpSegm.SetLayer( UNDEFINED_LAYER ); type_cell |= CELL_is_EDGE; } tmpSegm.SetStart( DrawSegm->GetStart() ); tmpSegm.SetEnd( DrawSegm->GetEnd() ); tmpSegm.SetShape( DrawSegm->GetShape() ); tmpSegm.SetWidth( DrawSegm->GetWidth() ); tmpSegm.m_Param = DrawSegm->GetAngle(); tmpSegm.SetNet( -1 ); TraceSegmentPcb( &tmpSegm, type_cell, marge, WRITE_CELL ); } break; case PCB_TEXT_T: { TEXTE_PCB* PtText; PtText = (TEXTE_PCB*) item; if( PtText->GetText().Length() == 0 ) break; EDA_RECT textbox = PtText->GetTextBox( -1 ); ux0 = textbox.GetX(); uy0 = textbox.GetY(); dx = textbox.GetWidth(); dy = textbox.GetHeight(); /* Put bounding box (rectangle) on matrix */ dx /= 2; dy /= 2; ux1 = ux0 + dx; uy1 = uy0 + dy; ux0 -= dx; uy0 -= dy; layerMask = GetLayerMask( PtText->GetLayer() ); TraceFilledRectangle( ux0 - marge, uy0 - marge, ux1 + marge, uy1 + marge, (int) (PtText->GetOrientation()), layerMask, HOLE, WRITE_CELL ); TraceFilledRectangle( ux0 - via_marge, uy0 - via_marge, ux1 + via_marge, uy1 + via_marge, (int) (PtText->GetOrientation()), layerMask, VIA_IMPOSSIBLE, WRITE_OR_CELL ); } break; default: break; } } /* Put tracks and vias on matrix */ for( TRACK* track = aPcb->m_Track; track; track = track->Next() ) { if( net_code == track->GetNet() ) continue; TraceSegmentPcb( track, HOLE, marge, WRITE_CELL ); TraceSegmentPcb( track, VIA_IMPOSSIBLE, via_marge, WRITE_OR_CELL ); } } int Build_Work( BOARD* Pcb ) { RATSNEST_ITEM* pt_rats; D_PAD* pt_pad; int r1, r2, c1, c2, current_net_code; RATSNEST_ITEM* pt_ch; int demi_pas = RoutingMatrix.m_GridRouting / 2; wxString msg; InitWork(); /* clear work list */ int cellCount = 0; for( unsigned ii = 0; ii < Pcb->GetRatsnestsCount(); ii++ ) { pt_rats = &Pcb->m_FullRatsnest[ii]; /* We consider here only ratsnest that are active ( obviously not yet routed) * and routables (that are not yet attempt to be routed and fail */ if( (pt_rats->m_Status & CH_ACTIF) == 0 ) continue; if( pt_rats->m_Status & CH_UNROUTABLE ) continue; if( (pt_rats->m_Status & CH_ROUTE_REQ) == 0 ) continue; pt_pad = pt_rats->m_PadStart; current_net_code = pt_pad->GetNet(); pt_ch = pt_rats; r1 = ( pt_pad->GetPosition().y - RoutingMatrix.m_BrdBox.GetY() + demi_pas ) / RoutingMatrix.m_GridRouting; if( r1 < 0 || r1 >= RoutingMatrix.m_Nrows ) { msg.Printf( wxT( "error : row = %d ( padY %d pcbY %d) " ), r1, pt_pad->GetPosition().y, RoutingMatrix.m_BrdBox.GetY() ); wxMessageBox( msg ); return 0; } c1 = ( pt_pad->GetPosition().x - RoutingMatrix.m_BrdBox.GetX() + demi_pas ) / RoutingMatrix.m_GridRouting; if( c1 < 0 || c1 >= RoutingMatrix.m_Ncols ) { msg.Printf( wxT( "error : col = %d ( padX %d pcbX %d) " ), c1, pt_pad->GetPosition().x, RoutingMatrix.m_BrdBox.GetX() ); wxMessageBox( msg ); return 0; } pt_pad = pt_rats->m_PadEnd; r2 = ( pt_pad->GetPosition().y - RoutingMatrix.m_BrdBox.GetY() + demi_pas ) / RoutingMatrix.m_GridRouting; if( r2 < 0 || r2 >= RoutingMatrix.m_Nrows ) { msg.Printf( wxT( "error : row = %d ( padY %d pcbY %d) " ), r2, pt_pad->GetPosition().y, RoutingMatrix.m_BrdBox.GetY() ); wxMessageBox( msg ); return 0; } c2 = ( pt_pad->GetPosition().x - RoutingMatrix.m_BrdBox.GetX() + demi_pas ) / RoutingMatrix.m_GridRouting; if( c2 < 0 || c2 >= RoutingMatrix.m_Ncols ) { msg.Printf( wxT( "error : col = %d ( padX %d pcbX %d) " ), c2, pt_pad->GetPosition().x, RoutingMatrix.m_BrdBox.GetX() ); wxMessageBox( msg ); return 0; } SetWork( r1, c1, current_net_code, r2, c2, pt_ch, 0 ); cellCount++; } SortWork(); return cellCount; } // Initialize m_opWriteCell member to make the aLogicOp void MATRIX_ROUTING_HEAD::SetCellOperation( int aLogicOp ) { switch( aLogicOp ) { default: case WRITE_CELL: m_opWriteCell = &MATRIX_ROUTING_HEAD::SetCell; break; case WRITE_OR_CELL: m_opWriteCell = &MATRIX_ROUTING_HEAD::OrCell; break; case WRITE_XOR_CELL: m_opWriteCell = &MATRIX_ROUTING_HEAD::XorCell; break; case WRITE_AND_CELL: m_opWriteCell = &MATRIX_ROUTING_HEAD::AndCell; break; case WRITE_ADD_CELL: m_opWriteCell = &MATRIX_ROUTING_HEAD::AddCell; break; } } /* return the value stored in a cell */ MATRIX_CELL MATRIX_ROUTING_HEAD::GetCell( int aRow, int aCol, int aSide ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; return p[aRow * m_Ncols + aCol]; } /* basic cell operation : WRITE operation */ void MATRIX_ROUTING_HEAD::SetCell( int aRow, int aCol, int aSide, MATRIX_CELL x ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; p[aRow * m_Ncols + aCol] = x; } /* basic cell operation : OR operation */ void MATRIX_ROUTING_HEAD::OrCell( int aRow, int aCol, int aSide, MATRIX_CELL x ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; p[aRow * m_Ncols + aCol] |= x; } /* basic cell operation : XOR operation */ void MATRIX_ROUTING_HEAD::XorCell( int aRow, int aCol, int aSide, MATRIX_CELL x ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; p[aRow * m_Ncols + aCol] ^= x; } /* basic cell operation : AND operation */ void MATRIX_ROUTING_HEAD::AndCell( int aRow, int aCol, int aSide, MATRIX_CELL x ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; p[aRow * m_Ncols + aCol] &= x; } /* basic cell operation : ADD operation */ void MATRIX_ROUTING_HEAD::AddCell( int aRow, int aCol, int aSide, MATRIX_CELL x ) { MATRIX_CELL* p; p = RoutingMatrix.m_BoardSide[aSide]; p[aRow * m_Ncols + aCol] += x; } /* fetch distance cell */ DIST_CELL MATRIX_ROUTING_HEAD::GetDist( int aRow, int aCol, int aSide ) /* fetch distance cell */ { DIST_CELL* p; p = RoutingMatrix.m_DistSide[aSide]; return p[aRow * m_Ncols + aCol]; } /* store distance cell */ void MATRIX_ROUTING_HEAD::SetDist( int aRow, int aCol, int aSide, DIST_CELL x ) { DIST_CELL* p; p = RoutingMatrix.m_DistSide[aSide]; p[aRow * m_Ncols + aCol] = x; } /* fetch direction cell */ int MATRIX_ROUTING_HEAD::GetDir( int aRow, int aCol, int aSide ) { DIR_CELL* p; p = RoutingMatrix.m_DirSide[aSide]; return (int) (p[aRow * m_Ncols + aCol]); } /* store direction cell */ void MATRIX_ROUTING_HEAD::SetDir( int aRow, int aCol, int aSide, int x ) { DIR_CELL* p; p = RoutingMatrix.m_DirSide[aSide]; p[aRow * m_Ncols + aCol] = (char) x; }