/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2004-2022 KiCad Developers. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include "drc_rtree.h" /* Holes clearance test. Checks pad and via holes for their mechanical clearances. Generated errors: - DRCE_DRILLED_HOLES_TOO_CLOSE - DRCE_DRILLED_HOLES_COLOCATED */ class DRC_TEST_PROVIDER_HOLE_TO_HOLE : public DRC_TEST_PROVIDER_CLEARANCE_BASE { public: DRC_TEST_PROVIDER_HOLE_TO_HOLE () : DRC_TEST_PROVIDER_CLEARANCE_BASE(), m_board( nullptr ), m_largestHoleToHoleClearance( 0 ) { } virtual ~DRC_TEST_PROVIDER_HOLE_TO_HOLE() { } virtual bool Run() override; virtual const wxString GetName() const override { return wxT( "hole_to_hole_clearance" ); }; virtual const wxString GetDescription() const override { return wxT( "Tests hole to hole spacing" ); } private: bool testHoleAgainstHole( BOARD_ITEM* aItem, SHAPE_CIRCLE* aHole, BOARD_ITEM* aOther ); BOARD* m_board; DRC_RTREE m_holeTree; int m_largestHoleToHoleClearance; }; static std::shared_ptr getDrilledHoleShape( BOARD_ITEM* aItem ) { if( aItem->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( aItem ); return std::make_shared( via->GetCenter(), via->GetDrillValue() / 2 ); } else if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast( aItem ); return std::make_shared( pad->GetPosition(), pad->GetDrillSize().x / 2 ); } return std::make_shared( VECTOR2I( 0, 0 ), 0 ); } bool DRC_TEST_PROVIDER_HOLE_TO_HOLE::Run() { if( m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_TOO_CLOSE ) && m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_COLOCATED ) ) { reportAux( wxT( "Hole to hole violations ignored. Tests not run." ) ); return true; // continue with other tests } m_board = m_drcEngine->GetBoard(); DRC_CONSTRAINT worstClearanceConstraint; if( m_drcEngine->QueryWorstConstraint( HOLE_TO_HOLE_CONSTRAINT, worstClearanceConstraint ) ) { m_largestHoleToHoleClearance = worstClearanceConstraint.GetValue().Min(); reportAux( wxT( "Worst hole to hole : %d nm" ), m_largestHoleToHoleClearance ); } else { reportAux( wxT( "No hole to hole constraints found. Skipping check." ) ); return true; // continue with other tests } if( !reportPhase( _( "Checking hole to hole clearances..." ) ) ) return false; // DRC cancelled const size_t progressDelta = 200; size_t count = 0; size_t ii = 0; m_holeTree.clear(); forEachGeometryItem( { PCB_PAD_T, PCB_VIA_T }, LSET::AllLayersMask(), [&]( BOARD_ITEM* item ) -> bool { ++count; return true; } ); count *= 2; // One for adding to the rtree; one for checking forEachGeometryItem( { PCB_PAD_T, PCB_VIA_T }, LSET::AllLayersMask(), [&]( BOARD_ITEM* item ) -> bool { if( !reportProgress( ii++, count, progressDelta ) ) return false; if( item->Type() == PCB_PAD_T ) { PAD* pad = static_cast( item ); // We only care about drilled (ie: round) holes if( pad->GetDrillSize().x && pad->GetDrillSize().x == pad->GetDrillSize().y ) m_holeTree.Insert( item, F_Cu, m_largestHoleToHoleClearance ); } else if( item->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( item ); // We only care about mechanically drilled (ie: non-laser) holes if( via->GetViaType() == VIATYPE::THROUGH ) m_holeTree.Insert( item, F_Cu, m_largestHoleToHoleClearance ); } return true; } ); std::unordered_map checkedPairs; for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() != PCB_VIA_T ) continue; PCB_VIA* via = static_cast( track ); if( !reportProgress( ii++, count, progressDelta ) ) return false; // DRC cancelled // We only care about mechanically drilled (ie: non-laser) holes if( via->GetViaType() == VIATYPE::THROUGH ) { std::shared_ptr holeShape = getDrilledHoleShape( via ); m_holeTree.QueryColliding( via, F_Cu, F_Cu, // Filter: [&]( BOARD_ITEM* other ) -> bool { BOARD_ITEM* a = via; BOARD_ITEM* b = other; // store canonical order so we don't collide in both directions // (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); if( checkedPairs.count( { a, b } ) ) { return false; } else { checkedPairs[ { a, b } ] = 1; return true; } }, // Visitor: [&]( BOARD_ITEM* other ) -> bool { return testHoleAgainstHole( via, holeShape.get(), other ); }, m_largestHoleToHoleClearance ); } } checkedPairs.clear(); for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( !reportProgress( ii++, count, progressDelta ) ) return false; // DRC cancelled // We only care about drilled (ie: round) holes if( pad->GetDrillSize().x && pad->GetDrillSize().x == pad->GetDrillSize().y ) { std::shared_ptr holeShape = getDrilledHoleShape( pad ); m_holeTree.QueryColliding( pad, F_Cu, F_Cu, // Filter: [&]( BOARD_ITEM* other ) -> bool { BOARD_ITEM* a = pad; BOARD_ITEM* b = other; // store canonical order so we don't collide in both directions // (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); if( checkedPairs.count( { a, b } ) ) { return false; } else { checkedPairs[ { a, b } ] = 1; return true; } }, // Visitor: [&]( BOARD_ITEM* other ) -> bool { return testHoleAgainstHole( pad, holeShape.get(), other ); }, m_largestHoleToHoleClearance ); } } if( m_drcEngine->IsCancelled() ) return false; } reportRuleStatistics(); return !m_drcEngine->IsCancelled(); } bool DRC_TEST_PROVIDER_HOLE_TO_HOLE::testHoleAgainstHole( BOARD_ITEM* aItem, SHAPE_CIRCLE* aHole, BOARD_ITEM* aOther ) { bool reportCoLocation = !m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_COLOCATED ); bool reportHole2Hole = !m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_TOO_CLOSE ); if( !reportCoLocation && !reportHole2Hole ) return false; std::shared_ptr otherHole = getDrilledHoleShape( aOther ); int epsilon = m_board->GetDesignSettings().GetDRCEpsilon(); SEG::ecoord epsilon_sq = SEG::Square( epsilon ); // Holes at same location generate a separate violation if( ( aHole->GetCenter() - otherHole->GetCenter() ).SquaredEuclideanNorm() < epsilon_sq ) { if( reportCoLocation ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_DRILLED_HOLES_COLOCATED ); drce->SetItems( aItem, aOther ); reportViolation( drce, aHole->GetCenter(), UNDEFINED_LAYER ); } } else if( reportHole2Hole ) { int actual = ( aHole->GetCenter() - otherHole->GetCenter() ).EuclideanNorm(); actual = std::max( 0, actual - aHole->GetRadius() - otherHole->GetRadius() ); auto constraint = m_drcEngine->EvalRules( HOLE_TO_HOLE_CONSTRAINT, aItem, aOther, UNDEFINED_LAYER /* holes pierce all layers */ ); int minClearance = constraint.GetValue().Min() - epsilon; if( constraint.GetSeverity() != RPT_SEVERITY_IGNORE && minClearance >= 0 && actual < minClearance ) { std::shared_ptr drce = DRC_ITEM::Create( DRCE_DRILLED_HOLES_TOO_CLOSE ); wxString msg; msg.Printf( _( "(%s min %s; actual %s)" ), constraint.GetName(), MessageTextFromValue( userUnits(), minClearance ), MessageTextFromValue( userUnits(), actual ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg ); drce->SetItems( aItem, aOther ); drce->SetViolatingRule( constraint.GetParentRule() ); reportViolation( drce, aHole->GetCenter(), UNDEFINED_LAYER ); } } return !m_drcEngine->IsCancelled(); } namespace detail { static DRC_REGISTER_TEST_PROVIDER dummy; }