/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file triangle_3d.cpp */ #include "triangle_3d.h" void TRIANGLE::pre_calc_const() { const SFVEC3F& A = m_vertex[0]; const SFVEC3F& B = m_vertex[1]; const SFVEC3F& C = m_vertex[2]; const SFVEC3F c = B - A; const SFVEC3F b = C - A; m_bbox.Reset(); m_bbox.Set( A ); m_bbox.Union( B ); m_bbox.Union( C ); m_bbox.ScaleNextUp(); m_centroid = m_bbox.GetCenter(); m_n = glm::cross( b, c ); if( glm::abs( m_n.x ) > glm::abs( m_n.y ) ) { if( glm::abs( m_n.x ) > glm::abs( m_n.z ) ) m_k = 0; else m_k = 2; } else { if( glm::abs( m_n.y ) > glm::abs( m_n.z ) ) m_k = 1; else m_k = 2; } int u = ( m_k + 1 ) % 3; int v = ( m_k + 2 ) % 3; // precomp float krec = 1.0f / m_n[m_k]; m_nu = m_n[u] * krec; m_nv = m_n[v] * krec; m_nd = glm::dot( m_n, A ) * krec; // first line equation float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]); m_bnu = b[u] * reci; m_bnv = -b[v] * reci; // second line equation m_cnu = c[v] * reci; m_cnv = -c[u] * reci; // finalize normal m_n = glm::normalize( m_n ); m_normal[0] = m_n; m_normal[1] = m_n; m_normal[2] = m_n; } TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3 ) : OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE ) { m_vertex[0] = aV1; m_vertex[1] = aV2; m_vertex[2] = aV3; m_vertexColorRGBA[0] = 0xFFFFFFFF; m_vertexColorRGBA[1] = 0xFFFFFFFF; m_vertexColorRGBA[2] = 0xFFFFFFFF; pre_calc_const(); } TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3, const SFVEC3F& aFaceNormal ) : OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE ) { m_vertex[0] = aV1; m_vertex[1] = aV2; m_vertex[2] = aV3; m_vertexColorRGBA[0] = 0xFFFFFFFF; m_vertexColorRGBA[1] = 0xFFFFFFFF; m_vertexColorRGBA[2] = 0xFFFFFFFF; pre_calc_const(); m_normal[0] = aFaceNormal; m_normal[1] = aFaceNormal; m_normal[2] = aFaceNormal; } TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3, const SFVEC3F& aN1, const SFVEC3F& aN2, const SFVEC3F& aN3 ) : OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE ) { m_vertex[0] = aV1; m_vertex[1] = aV2; m_vertex[2] = aV3; m_vertexColorRGBA[0] = 0xFFFFFFFF; m_vertexColorRGBA[1] = 0xFFFFFFFF; m_vertexColorRGBA[2] = 0xFFFFFFFF; pre_calc_const(); m_normal[0] = aN1; m_normal[1] = aN2; m_normal[2] = aN3; } void TRIANGLE::SetColor( const SFVEC3F& aColor ) { m_vertexColorRGBA[0] = ( (unsigned int) ( aColor.r * 255 ) << 24 ) | ( (unsigned int) ( aColor.g * 255 ) << 16 ) | ( (unsigned int) ( aColor.b * 255 ) << 8 ) | 0xFF; m_vertexColorRGBA[1] = m_vertexColorRGBA[0]; m_vertexColorRGBA[2] = m_vertexColorRGBA[0]; } void TRIANGLE::SetColor( const SFVEC3F& aVC0, const SFVEC3F& aVC1, const SFVEC3F& aVC2 ) { m_vertexColorRGBA[0] = ( (unsigned int) ( aVC0.r * 255 ) << 24 ) | ( (unsigned int) ( aVC0.g * 255 ) << 16 ) | ( (unsigned int) ( aVC0.b * 255 ) << 8 ) | 0xFF; m_vertexColorRGBA[1] = ( (unsigned int) ( aVC1.r * 255 ) << 24 ) | ( (unsigned int) ( aVC1.g * 255 ) << 16 ) | ( (unsigned int) ( aVC1.b * 255 ) << 8 ) | 0xFF; m_vertexColorRGBA[2] = ( (unsigned int) ( aVC2.r * 255 ) << 24 ) | ( (unsigned int) ( aVC2.g * 255 ) << 16 ) | ( (unsigned int) ( aVC2.b * 255 ) << 8 ) | 0xFF; } void TRIANGLE::SetColor( unsigned int aFaceColorRGBA ) { m_vertexColorRGBA[0] = aFaceColorRGBA; m_vertexColorRGBA[1] = aFaceColorRGBA; m_vertexColorRGBA[2] = aFaceColorRGBA; } void TRIANGLE::SetColor( unsigned int aVertex1ColorRGBA, unsigned int aVertex2ColorRGBA, unsigned int aVertex3ColorRGBA ) { m_vertexColorRGBA[0] = aVertex1ColorRGBA; m_vertexColorRGBA[1] = aVertex2ColorRGBA; m_vertexColorRGBA[2] = aVertex3ColorRGBA; } void TRIANGLE::SetUV( const SFVEC2F& aUV1, const SFVEC2F& aUV2, const SFVEC2F& aUV3 ) { m_uv[0] = aUV1; m_uv[1] = aUV2; m_uv[2] = aUV3; } static const unsigned int s_modulo[] = { 0, 1, 2, 0, 1 }; bool TRIANGLE::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const { //!TODO: precalc this, improove it #define ku s_modulo[m_k + 1] #define kv s_modulo[m_k + 2] const SFVEC3F& O = aRay.m_Origin; const SFVEC3F& D = aRay.m_Dir; const SFVEC3F& A = m_vertex[0]; const float lnd = 1.0f / (D[m_k] + m_nu * D[ku] + m_nv * D[kv]); const float t = ( m_nd - O[m_k] - m_nu * O[ku] - m_nv * O[kv] ) * lnd; if( !( ( aHitInfo.m_tHit > t ) && ( t > 0.0f ) ) ) return false; const float hu = O[ku] + t * D[ku] - A[ku]; const float hv = O[kv] + t * D[kv] - A[kv]; const float beta = hv * m_bnu + hu * m_bnv; if( beta < 0.0f ) return false; const float gamma = hu * m_cnu + hv * m_cnv; if( gamma < 0 ) return false; const float v = gamma; const float u = beta; if( (u + v) > 1.0f ) return false; if( glm::dot( D, m_n ) > 0.0f ) return false; aHitInfo.m_tHit = t; aHitInfo.m_HitPoint = aRay.at( t ); // interpolate vertex normals with UVW using Gouraud's shading aHitInfo.m_HitNormal = glm::normalize( ( 1.0f - u - v ) * m_normal[0] + u * m_normal[1] + v * m_normal[2] ); m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); aHitInfo.pHitObject = this; return true; #undef ku #undef kv } bool TRIANGLE::IntersectP( const RAY& aRay, float aMaxDistance ) const { //!TODO: precalc this #define ku s_modulo[m_k + 1] #define kv s_modulo[m_k + 2] const SFVEC3F O = aRay.m_Origin; const SFVEC3F D = aRay.m_Dir; const SFVEC3F A = m_vertex[0]; const float lnd = 1.0f / (D[m_k] + m_nu * D[ku] + m_nv * D[kv]); const float t = ( m_nd - O[m_k] - m_nu * O[ku] - m_nv * O[kv] ) * lnd; if( !( ( aMaxDistance > t ) && ( t > 0.0f ) ) ) return false; const float hu = O[ku] + t * D[ku] - A[ku]; const float hv = O[kv] + t * D[kv] - A[kv]; const float beta = hv * m_bnu + hu * m_bnv; if( beta < 0.0f ) return false; const float gamma = hu * m_cnu + hv * m_cnv; if( gamma < 0.0f ) return false; const float v = gamma; const float u = beta; if( (u + v) > 1.0f ) return false; if( glm::dot( D, m_n ) > 0.0f ) return false; return true; #undef ku #undef kv } bool TRIANGLE::Intersects( const BBOX_3D& aBBox ) const { //!TODO: improove return m_bbox.Intersects( aBBox ); } SFVEC3F TRIANGLE::GetDiffuseColor( const HITINFO& aHitInfo ) const { const unsigned int rgbC1 = m_vertexColorRGBA[0]; const unsigned int rgbC2 = m_vertexColorRGBA[1]; const unsigned int rgbC3 = m_vertexColorRGBA[2]; const SFVEC3F c1 = SFVEC3F( (float) ( ( rgbC1 >> 24 ) & 0xFF ) / 255.0f, (float) ( ( rgbC1 >> 16 ) & 0xFF ) / 255.0f, (float) ( ( rgbC1 >> 8 ) & 0xFF ) / 255.0f ); const SFVEC3F c2 = SFVEC3F( (float) ( ( rgbC2 >> 24 ) & 0xFF ) / 255.0f, (float) ( ( rgbC2 >> 16 ) & 0xFF ) / 255.0f, (float) ( ( rgbC2 >> 8 ) & 0xFF ) / 255.0f ); const SFVEC3F c3 = SFVEC3F( (float) ( ( rgbC3 >> 24 ) & 0xFF ) / 255.0f, (float) ( ( rgbC3 >> 16 ) & 0xFF ) / 255.0f, (float) ( ( rgbC3 >> 8 ) & 0xFF ) / 255.0f ); const float u = aHitInfo.m_UV.x; const float v = aHitInfo.m_UV.y; const float w = 1.0f - u - v; return w * c1 + u * c2 + v * c3; }