/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2020 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef DRC_RTREE_H_ #define DRC_RTREE_H_ #include #include #include #include #include #include #include #include #include #include #include #include "geometry/shape_null.h" #include "board.h" /** * Implement an R-tree for fast spatial and layer indexing of connectable items. * Non-owning. */ class DRC_RTREE { public: struct ITEM_WITH_SHAPE { ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const SHAPE* aShape, std::shared_ptr aParentShape = nullptr ) : parent( aParent ), shape( aShape ), shapeStorage( nullptr ), parentShape( std::move( aParentShape ) ) {}; ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const std::shared_ptr& aShape, std::shared_ptr aParentShape = nullptr ) : parent( aParent ), shape( aShape.get() ), shapeStorage( aShape ), parentShape( std::move( aParentShape ) ) {}; BOARD_ITEM* parent; const SHAPE* shape; std::shared_ptr shapeStorage; std::shared_ptr parentShape; }; private: using drc_rtree = RTree; public: DRC_RTREE() { for( int layer : LSET::AllLayersMask().Seq() ) m_tree[layer] = new drc_rtree(); m_count = 0; } ~DRC_RTREE() { for( drc_rtree* tree : m_tree ) { for( DRC_RTREE::ITEM_WITH_SHAPE* el : *tree ) delete el; delete tree; } } /** * Insert an item into the tree on a particular layer with an optional worst clearance. */ void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aWorstClearance = 0 ) { Insert( aItem, aLayer, aLayer, aWorstClearance ); } /** * Insert an item into the tree on a particular layer with a worst clearance. Allows the * source layer to be different from the tree layer. */ void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, int aWorstClearance ) { wxCHECK( aTargetLayer != UNDEFINED_LAYER, /* void */ ); if( aItem->Type() == PCB_TEXT_T && !static_cast( aItem )->IsVisible() ) return; std::vector subshapes; std::shared_ptr shape = aItem->GetEffectiveShape( aRefLayer ); if( shape->HasIndexableSubshapes() ) shape->GetIndexableSubshapes( subshapes ); else subshapes.push_back( shape.get() ); for( const SHAPE* subshape : subshapes ) { if( dynamic_cast( subshape ) ) continue; BOX2I bbox = subshape->BBox(); bbox.Inflate( aWorstClearance ); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, subshape, shape ); m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape ); m_count++; } if( aItem->Type() == PCB_PAD_T && aItem->HasHole() ) { std::shared_ptr hole = aItem->GetEffectiveHoleShape(); BOX2I bbox = hole->BBox(); bbox.Inflate( aWorstClearance ); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, hole, shape ); m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape ); m_count++; } } /** * Remove all items from the RTree. */ void clear() { for( auto tree : m_tree ) tree->RemoveAll(); m_count = 0; } bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0, std::function aFilter = nullptr ) const { BOX2I box = aRefShape->BBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; int count = 0; auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool { if( !aFilter || aFilter( aItem->parent ) ) { int actual; if( aRefShape->Collide( aItem->shape, aClearance, &actual ) ) { count++; return false; } } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count > 0; } /** * This is a fast test which essentially does bounding-box overlap given a worst-case * clearance. It's used when looking up the specific item-to-item clearance might be * expensive and should be deferred till we know we have a possible hit. */ int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function aFilter = nullptr, std::function aVisitor = nullptr, int aClearance = 0 ) const { // keep track of BOARD_ITEMs that have already been found to collide (some items might // be built of COMPOUND/triangulated shapes and a single subshape collision means we have // a hit) std::unordered_set collidingCompounds; // keep track of results of client filter so we don't ask more than once for compound // shapes std::unordered_map filterResults; BOX2I box = aRefItem->GetBoundingBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; std::shared_ptr refShape = aRefItem->GetEffectiveShape( aRefLayer ); int count = 0; auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( aItem->parent == aRefItem ) return true; if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() ) return true; bool filtered; auto it = filterResults.find( aItem->parent ); if( it == filterResults.end() ) { filtered = aFilter && !aFilter( aItem->parent ); filterResults[ aItem->parent ] = filtered; } else { filtered = it->second; } if( filtered ) return true; if( refShape->Collide( aItem->shape, aClearance ) ) { collidingCompounds.insert( aItem->parent ); count++; if( aVisitor ) return aVisitor( aItem->parent ); } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count; } /** * This one is for tessellated items. (All shapes in the tree will be from a single * BOARD_ITEM.) * It checks all items in the bbox overlap to find the minimal actual distance and * position. */ bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance, int* aActual, VECTOR2I* aPos ) const { BOX2I bbox = aBox; bbox.Inflate( aClearance ); int min[2] = { bbox.GetX(), bbox.GetY() }; int max[2] = { bbox.GetRight(), bbox.GetBottom() }; bool collision = false; int actual = INT_MAX; VECTOR2I pos; auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { int curActual; VECTOR2I curPos; if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) ) { collision = true; if( curActual < actual ) { actual = curActual; pos = curPos; } // Stop looking after we have a true collision if( actual <= 0 ) return false; } return true; }; this->m_tree[aLayer]->Search( min, max, visit ); if( collision ) { if( aActual ) *aActual = std::max( 0, actual ); if( aPos ) *aPos = pos; return true; } return false; } /** * Quicker version of above that just reports a raw yes/no. */ bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer ) const { SHAPE_POLY_SET* poly = dynamic_cast( aRefShape ); int min[2] = { aBox.GetX(), aBox.GetY() }; int max[2] = { aBox.GetRight(), aBox.GetBottom() }; bool collision = false; // Special case the polygon case. Otherwise we'll call its Collide() method which will // triangulate it as well and then do triangle/triangle collisions. This ends up being // *much* slower than 3 segment Collide()s and a PointInside(). auto polyVisitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { const SHAPE* shape = aItem->shape; wxASSERT( dynamic_cast( shape ) ); auto tri = static_cast( shape ); const SHAPE_LINE_CHAIN& outline = poly->Outline( 0 ); for( int ii = 0; ii < (int) tri->GetSegmentCount(); ++ii ) { if( outline.Collide( tri->GetSegment( ii ) ) ) { collision = true; return false; } } // Also must check for poly being completely inside the triangle if( tri->PointInside( outline.CPoint( 0 ) ) ) { collision = true; return false; } return true; }; auto visitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( aRefShape->Collide( aItem->shape, 0 ) ) { collision = true; return false; } return true; }; if( poly && poly->OutlineCount() == 1 && poly->HoleCount( 0 ) == 0 ) this->m_tree[aLayer]->Search( min, max, polyVisitor ); else this->m_tree[aLayer]->Search( min, max, visitor ); return collision; } /** * Gets the BOARD_ITEMs that overlap the specified point/layer * @param aPt Position on the tree * @param aLayer Layer to search * @return vector of overlapping BOARD_ITEMS* */ std::unordered_set GetObjectsAt( const VECTOR2I& aPt, PCB_LAYER_ID aLayer, int aClearance = 0 ) { std::unordered_set retval; int min[2] = { aPt.x - aClearance, aPt.y - aClearance }; int max[2] = { aPt.x + aClearance, aPt.y + aClearance }; auto visitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { retval.insert( aItem->parent ); return true; }; m_tree[aLayer]->Search( min, max, visitor ); return retval; } typedef std::pair LAYER_PAIR; struct PAIR_INFO { PAIR_INFO( LAYER_PAIR aPair, ITEM_WITH_SHAPE* aRef, ITEM_WITH_SHAPE* aTest ) : layerPair( aPair ), refItem( aRef ), testItem( aTest ) { }; LAYER_PAIR layerPair; ITEM_WITH_SHAPE* refItem; ITEM_WITH_SHAPE* testItem; }; int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector aLayerPairs, std::function aVisitor, int aMaxClearance, std::function aProgressReporter ) const { std::vector pairsToVisit; for( LAYER_PAIR& layerPair : aLayerPairs ) { const PCB_LAYER_ID refLayer = layerPair.first; const PCB_LAYER_ID targetLayer = layerPair.second; for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) ) { BOX2I box = refItem->shape->BBox(); box.Inflate( aMaxClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; auto visit = [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool { // don't collide items against themselves if( aItemToTest->parent == refItem->parent ) return true; pairsToVisit.emplace_back( layerPair, refItem, aItemToTest ); return true; }; this->m_tree[targetLayer]->Search( min, max, visit ); }; } // keep track of BOARD_ITEMs pairs that have been already found to collide (some items // might be build of COMPOUND/triangulated shapes and a single subshape collision // means we have a hit) std::unordered_map collidingCompounds; int progress = 0; int count = pairsToVisit.size(); for( const PAIR_INFO& pair : pairsToVisit ) { if( !aProgressReporter( progress++, count ) ) break; BOARD_ITEM* a = pair.refItem->parent; BOARD_ITEM* b = pair.testItem->parent; // store canonical order so we don't collide in both directions (a:b and b:a) if( static_cast( a ) > static_cast( b ) ) std::swap( a, b ); // don't report multiple collisions for compound or triangulated shapes if( collidingCompounds.count( { a, b } ) ) continue; bool collisionDetected = false; if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) ) break; if( collisionDetected ) collidingCompounds[ { a, b } ] = 1; } return 0; } /** * Return the number of items in the tree. * * @return number of elements in the tree. */ size_t size() const { return m_count; } bool empty() const { return m_count == 0; } using iterator = typename drc_rtree::Iterator; /** * The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using * this struct, one can write lines like: * * for( auto item : rtree.OnLayer( In1_Cu ) ) * * and iterate over only the RTree items that are on In1 */ struct DRC_LAYER { DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree ) { m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } }; }; DRC_LAYER( drc_rtree* aTree, const BOX2I& aRect ) : layer_tree( aTree ) { m_rect = { { aRect.GetX(), aRect.GetY() }, { aRect.GetRight(), aRect.GetBottom() } }; }; drc_rtree::Rect m_rect; drc_rtree* layer_tree; iterator begin() { return layer_tree->begin( m_rect ); } iterator end() { return layer_tree->end( m_rect ); } }; DRC_LAYER OnLayer( PCB_LAYER_ID aLayer ) const { return DRC_LAYER( m_tree[int( aLayer )] ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const VECTOR2I& aPoint, int aAccuracy = 0 ) const { BOX2I rect( aPoint, VECTOR2I( 0, 0 ) ); rect.Inflate( aAccuracy ); return DRC_LAYER( m_tree[int( aLayer )], rect ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const BOX2I& aRect ) const { return DRC_LAYER( m_tree[int( aLayer )], aRect ); } private: drc_rtree* m_tree[PCB_LAYER_ID_COUNT]; size_t m_count; }; #endif /* DRC_RTREE_H_ */