/** * @file dist.cpp * @brief Routines to calculate PCB editor auto routing distances. */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors. * * First copyright (C) Randy Nevin, 1989 (see PCBCA package) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include /* The tables of distances and keep out areas are established on the basis of a * 50 units grid size (the pitch between the cells is 50 units). * The actual distance could be computed by a scaling factor, but this is * not needed, we can use only reduced values */ /* calculate approximate distance (manhattan distance) */ int MATRIX_ROUTING_HEAD::GetApxDist( int r1, int c1, int r2, int c2 ) { int d1, d2; /* row and column deltas */ if( ( d1 = r1 - r2 ) < 0 ) /* get absolute row delta */ d1 = -d1; if( ( d2 = c1 - c2 ) < 0 ) /* get absolute column delta */ d2 = -d2; return ( d1+d2 ) * 50; } /* distance to go thru a cell (en mils) */ static const int dist[10][10] = { /* OT=Otherside, OR=Origin (source) cell */ /*..........N, NE, E, SE, S, SW, W, NW, OT, OR */ /* N */ { 50, 60, 35, 60, 99, 60, 35, 60, 12, 12 }, /* NE */ { 60, 71, 60, 71, 60, 99, 60, 71, 23, 23 }, /* E */ { 35, 60, 50, 60, 35, 60, 99, 60, 12, 12 }, /* SE */ { 60, 71, 60, 71, 60, 71, 60, 99, 23, 23 }, /* S */ { 99, 60, 35, 60, 50, 60, 35, 60, 12, 12 }, /* SW */ { 60, 99, 60, 71, 60, 71, 60, 71, 23, 23 }, /* W */ { 35, 60, 99, 60, 35, 60, 50, 60, 12, 12 }, /* NW */ { 60, 71, 60, 99, 60, 71, 60, 71, 23, 23 }, /* OT */ { 12, 23, 12, 23, 12, 23, 12, 23, 99, 99 }, /* OR */ { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 } }; /* penalty for extraneous holes and corners, scaled by sharpness of turn */ static const int penalty[10][10] = { /* OT=Otherside, OR=Origin (source) cell */ /*......... N, NE, E, SE, S, SW, W, NW, OT, OR */ /* N */ { 0, 5, 10, 15, 20, 15, 10, 5, 50, 0 }, /* NE */ { 5, 0, 5, 10, 15, 20, 15, 10, 50, 0 }, /* E */ { 10, 5, 0, 5, 10, 15, 20, 15, 50, 0 }, /* SE */ { 15, 10, 5, 0, 5, 10, 15, 20, 50, 0 }, /* S */ { 20, 15, 10, 5, 0, 5, 10, 15, 50, 0 }, /* SW */ { 15, 20, 15, 10, 5, 0, 5, 10, 50, 0 }, /* W */ { 10, 15, 20, 15, 10, 5, 0, 5, 50, 0 }, /* NW */ { 5, 10, 15, 20, 15, 10, 5, 0, 50, 0 }, /* OT */ { 50, 50, 50, 50, 50, 50, 50, 50, 100, 0 }, /* OR */ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; /* penalty pour directions preferencielles */ #define PN 20 static const int dir_penalty_TOP[10][10] = { /* OT=Otherside, OR=Origin (source) cell */ /*......... N, NE, E, SE, S, SW, W, NW, OT, OR */ /* N */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* NE */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* E */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* SE */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* S */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* SW */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* W */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* NW */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* OT */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }, /* OR */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 } }; static int dir_penalty_BOTTOM[10][10] = { /* OT=Otherside, OR=Origin (source) cell */ /*......... N, NE, E, SE, S, SW, W, NW, OT, OR */ /* N */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* NE */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* E */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* SE */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* S */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* SW */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* W */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* NW */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* OT */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }, /* OR */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 } }; /* ** x is the direction to enter the cell of interest. ** y is the direction to exit the cell of interest. ** z is the direction to really exit the cell, if y=FROM_OTHERSIDE. ** ** return the distance of the trace through the cell of interest. ** the calculation is driven by the tables above. */ /* calculate distance (with penalty) of a trace through a cell */ int MATRIX_ROUTING_HEAD::CalcDist(int x,int y,int z ,int side ) { int adjust, ldist; adjust = 0; /* set if hole is encountered */ if( x == EMPTY ) x = 10; if( y == EMPTY ) { y = 10; } else if( y == FROM_OTHERSIDE ) { if( z == EMPTY ) z = 10; adjust = penalty[x-1][z-1]; } ldist = dist[x-1][y-1] + penalty[x-1][y-1] + adjust; if( m_RouteCount > 1 ) { if( side == BOTTOM ) ldist += dir_penalty_TOP[x-1][y-1]; if( side == TOP ) ldist += dir_penalty_BOTTOM[x-1][y-1]; } return ldist * 10; }