/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 Mikolaj Wielgus * Copyright (C) 2022 CERN * Copyright (C) 2022-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sim_model_spice_fallback.h" using TYPE = SIM_MODEL::TYPE; SIM_MODEL::DEVICE_INFO SIM_MODEL::DeviceInfo( DEVICE_T aDeviceType ) { switch( aDeviceType ) { // | fieldValue | description | showInMenu | // ------------------------------------------------------- // case DEVICE_T::NONE: return { "", "", true }; case DEVICE_T::R: return { "R", "Resistor", true }; case DEVICE_T::C: return { "C", "Capacitor", true }; case DEVICE_T::L: return { "L", "Inductor", true }; case DEVICE_T::K: return { "K", "Mutual Inductance Statement", true }; case DEVICE_T::TLINE: return { "TLINE", "Transmission Line", true }; case DEVICE_T::SW: return { "SW", "Switch", true }; case DEVICE_T::D: return { "D", "Diode", true }; case DEVICE_T::NPN: return { "NPN", "NPN BJT", true }; case DEVICE_T::PNP: return { "PNP", "PNP BJT", true }; case DEVICE_T::NJFET: return { "NJFET", "N-channel JFET", true }; case DEVICE_T::PJFET: return { "PJFET", "P-channel JFET", true }; case DEVICE_T::NMOS: return { "NMOS", "N-channel MOSFET", true }; case DEVICE_T::PMOS: return { "PMOS", "P-channel MOSFET", true }; case DEVICE_T::NMES: return { "NMES", "N-channel MESFET", true }; case DEVICE_T::PMES: return { "PMES", "P-channel MESFET", true }; case DEVICE_T::V: return { "V", "Voltage Source", true }; case DEVICE_T::I: return { "I", "Current Source", true }; case DEVICE_T::E: return { "E", "Voltage Source", false }; case DEVICE_T::F: return { "F", "Current Source", false }; case DEVICE_T::G: return { "G", "Current Source", false }; case DEVICE_T::H: return { "H", "Voltage Source", false }; case DEVICE_T::KIBIS: return { "IBIS", "IBIS Model", false }; case DEVICE_T::SUBCKT: return { "SUBCKT", "Subcircuit", false }; case DEVICE_T::XSPICE: return { "XSPICE", "XSPICE Code Model", true }; case DEVICE_T::SPICE: return { "SPICE", "Raw Spice Element", true }; default: wxFAIL; return {}; } } SIM_MODEL::INFO SIM_MODEL::TypeInfo( TYPE aType ) { switch( aType ) { // | deviceType | fieldValue | description | // --------------------------------------------------------------------- // case TYPE::NONE: return { DEVICE_T::NONE, "", "" }; case TYPE::R: return { DEVICE_T::R, "", "Ideal" }; case TYPE::R_POT: return { DEVICE_T::R, "POT", "Potentiometer" }; case TYPE::R_BEHAVIORAL: return { DEVICE_T::R, "=", "Behavioral" }; case TYPE::C: return { DEVICE_T::C, "", "Ideal" }; case TYPE::C_BEHAVIORAL: return { DEVICE_T::C, "=", "Behavioral" }; case TYPE::L: return { DEVICE_T::L, "", "Ideal" }; case TYPE::L_BEHAVIORAL: return { DEVICE_T::L, "=", "Behavioral" }; case TYPE::K: return { DEVICE_T::K, "", "Mutual Inductance Statement" }; case TYPE::TLINE_Z0: return { DEVICE_T::TLINE, "", "Characteristic impedance" }; case TYPE::TLINE_RLGC: return { DEVICE_T::TLINE, "RLGC", "RLGC" }; case TYPE::SW_V: return { DEVICE_T::SW, "V", "Voltage-controlled" }; case TYPE::SW_I: return { DEVICE_T::SW, "I", "Current-controlled" }; case TYPE::D: return { DEVICE_T::D, "", "" }; case TYPE::NPN_VBIC: return { DEVICE_T::NPN, "VBIC", "VBIC" }; case TYPE::PNP_VBIC: return { DEVICE_T::PNP, "VBIC", "VBIC" }; case TYPE::NPN_GUMMELPOON: return { DEVICE_T::NPN, "GUMMELPOON", "Gummel-Poon" }; case TYPE::PNP_GUMMELPOON: return { DEVICE_T::PNP, "GUMMELPOON", "Gummel-Poon" }; //case TYPE::BJT_MEXTRAM: return {}; case TYPE::NPN_HICUM2: return { DEVICE_T::NPN, "HICUML2", "HICUM level 2" }; case TYPE::PNP_HICUM2: return { DEVICE_T::PNP, "HICUML2", "HICUM level 2" }; //case TYPE::BJT_HICUM_L0: return {}; case TYPE::NJFET_SHICHMANHODGES: return { DEVICE_T::NJFET, "SHICHMANHODGES", "Shichman-Hodges" }; case TYPE::PJFET_SHICHMANHODGES: return { DEVICE_T::PJFET, "SHICHMANHODGES", "Shichman-Hodges" }; case TYPE::NJFET_PARKERSKELLERN: return { DEVICE_T::NJFET, "PARKERSKELLERN", "Parker-Skellern" }; case TYPE::PJFET_PARKERSKELLERN: return { DEVICE_T::PJFET, "PARKERSKELLERN", "Parker-Skellern" }; case TYPE::NMES_STATZ: return { DEVICE_T::NMES, "STATZ", "Statz" }; case TYPE::PMES_STATZ: return { DEVICE_T::PMES, "STATZ", "Statz" }; case TYPE::NMES_YTTERDAL: return { DEVICE_T::NMES, "YTTERDAL", "Ytterdal" }; case TYPE::PMES_YTTERDAL: return { DEVICE_T::PMES, "YTTERDAL", "Ytterdal" }; case TYPE::NMES_HFET1: return { DEVICE_T::NMES, "HFET1", "HFET1" }; case TYPE::PMES_HFET1: return { DEVICE_T::PMES, "HFET1", "HFET1" }; case TYPE::NMES_HFET2: return { DEVICE_T::NMES, "HFET2", "HFET2" }; case TYPE::PMES_HFET2: return { DEVICE_T::PMES, "HFET2", "HFET2" }; case TYPE::NMOS_VDMOS: return { DEVICE_T::NMOS, "VDMOS", "VDMOS" }; case TYPE::PMOS_VDMOS: return { DEVICE_T::PMOS, "VDMOS", "VDMOS" }; case TYPE::NMOS_MOS1: return { DEVICE_T::NMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::PMOS_MOS1: return { DEVICE_T::PMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::NMOS_MOS2: return { DEVICE_T::NMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::PMOS_MOS2: return { DEVICE_T::PMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::NMOS_MOS3: return { DEVICE_T::NMOS, "MOS3", "MOS3" }; case TYPE::PMOS_MOS3: return { DEVICE_T::PMOS, "MOS3", "MOS3" }; case TYPE::NMOS_BSIM1: return { DEVICE_T::NMOS, "BSIM1", "BSIM1" }; case TYPE::PMOS_BSIM1: return { DEVICE_T::PMOS, "BSIM1", "BSIM1" }; case TYPE::NMOS_BSIM2: return { DEVICE_T::NMOS, "BSIM2", "BSIM2" }; case TYPE::PMOS_BSIM2: return { DEVICE_T::PMOS, "BSIM2", "BSIM2" }; case TYPE::NMOS_MOS6: return { DEVICE_T::NMOS, "MOS6", "MOS6" }; case TYPE::PMOS_MOS6: return { DEVICE_T::PMOS, "MOS6", "MOS6" }; case TYPE::NMOS_BSIM3: return { DEVICE_T::NMOS, "BSIM3", "BSIM3" }; case TYPE::PMOS_BSIM3: return { DEVICE_T::PMOS, "BSIM3", "BSIM3" }; case TYPE::NMOS_MOS9: return { DEVICE_T::NMOS, "MOS9", "MOS9" }; case TYPE::PMOS_MOS9: return { DEVICE_T::PMOS, "MOS9", "MOS9" }; case TYPE::NMOS_B4SOI: return { DEVICE_T::NMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::PMOS_B4SOI: return { DEVICE_T::PMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::NMOS_BSIM4: return { DEVICE_T::NMOS, "BSIM4", "BSIM4" }; case TYPE::PMOS_BSIM4: return { DEVICE_T::PMOS, "BSIM4", "BSIM4" }; //case TYPE::NMOS_EKV2_6: return {}; //case TYPE::PMOS_EKV2_6: return {}; //case TYPE::NMOS_PSP: return {}; //case TYPE::PMOS_PSP: return {}; case TYPE::NMOS_B3SOIFD: return { DEVICE_T::NMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::PMOS_B3SOIFD: return { DEVICE_T::PMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::NMOS_B3SOIDD: return { DEVICE_T::NMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::PMOS_B3SOIDD: return { DEVICE_T::PMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::NMOS_B3SOIPD: return { DEVICE_T::NMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; case TYPE::PMOS_B3SOIPD: return { DEVICE_T::PMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; //case TYPE::NMOS_STAG: return {}; //case TYPE::PMOS_STAG: return {}; case TYPE::NMOS_HISIM2: return { DEVICE_T::NMOS, "HISIM2", "HiSIM2" }; case TYPE::PMOS_HISIM2: return { DEVICE_T::PMOS, "HISIM2", "HiSIM2" }; case TYPE::NMOS_HISIMHV1: return { DEVICE_T::NMOS, "HISIMHV1", "HiSIM_HV1" }; case TYPE::PMOS_HISIMHV1: return { DEVICE_T::PMOS, "HISIMHV1", "HiSIM_HV1" }; case TYPE::NMOS_HISIMHV2: return { DEVICE_T::NMOS, "HISIMHV2", "HiSIM_HV2" }; case TYPE::PMOS_HISIMHV2: return { DEVICE_T::PMOS, "HISIMHV2", "HiSIM_HV2" }; case TYPE::V: return { DEVICE_T::V, "DC", "DC", }; case TYPE::V_SIN: return { DEVICE_T::V, "SIN", "Sine" }; case TYPE::V_PULSE: return { DEVICE_T::V, "PULSE", "Pulse" }; case TYPE::V_EXP: return { DEVICE_T::V, "EXP", "Exponential" }; case TYPE::V_AM: return { DEVICE_T::V, "AM", "Amplitude modulated" }; case TYPE::V_SFFM: return { DEVICE_T::V, "SFFM", "Single-frequency FM" }; case TYPE::V_VCL: return { DEVICE_T::E, "", "Voltage-controlled" }; case TYPE::V_CCL: return { DEVICE_T::H, "", "Current-controlled" }; case TYPE::V_PWL: return { DEVICE_T::V, "PWL", "Piecewise linear" }; case TYPE::V_WHITENOISE: return { DEVICE_T::V, "WHITENOISE", "White noise" }; case TYPE::V_PINKNOISE: return { DEVICE_T::V, "PINKNOISE", "Pink noise (1/f)" }; case TYPE::V_BURSTNOISE: return { DEVICE_T::V, "BURSTNOISE", "Burst noise" }; case TYPE::V_RANDUNIFORM: return { DEVICE_T::V, "RANDUNIFORM", "Random uniform" }; case TYPE::V_RANDGAUSSIAN: return { DEVICE_T::V, "RANDGAUSSIAN", "Random Gaussian" }; case TYPE::V_RANDEXP: return { DEVICE_T::V, "RANDEXP", "Random exponential" }; case TYPE::V_RANDPOISSON: return { DEVICE_T::V, "RANDPOISSON", "Random Poisson" }; case TYPE::V_BEHAVIORAL: return { DEVICE_T::V, "=", "Behavioral" }; case TYPE::I: return { DEVICE_T::I, "DC", "DC", }; case TYPE::I_SIN: return { DEVICE_T::I, "SIN", "Sine" }; case TYPE::I_PULSE: return { DEVICE_T::I, "PULSE", "Pulse" }; case TYPE::I_EXP: return { DEVICE_T::I, "EXP", "Exponential" }; case TYPE::I_AM: return { DEVICE_T::I, "AM", "Amplitude modulated" }; case TYPE::I_SFFM: return { DEVICE_T::I, "SFFM", "Single-frequency FM" }; case TYPE::I_VCL: return { DEVICE_T::G, "", "Voltage-controlled" }; case TYPE::I_CCL: return { DEVICE_T::F, "", "Current-controlled" }; case TYPE::I_PWL: return { DEVICE_T::I, "PWL", "Piecewise linear" }; case TYPE::I_WHITENOISE: return { DEVICE_T::I, "WHITENOISE", "White noise" }; case TYPE::I_PINKNOISE: return { DEVICE_T::I, "PINKNOISE", "Pink noise (1/f)" }; case TYPE::I_BURSTNOISE: return { DEVICE_T::I, "BURSTNOISE", "Burst noise" }; case TYPE::I_RANDUNIFORM: return { DEVICE_T::I, "RANDUNIFORM", "Random uniform" }; case TYPE::I_RANDGAUSSIAN: return { DEVICE_T::I, "RANDGAUSSIAN", "Random Gaussian" }; case TYPE::I_RANDEXP: return { DEVICE_T::I, "RANDEXP", "Random exponential" }; case TYPE::I_RANDPOISSON: return { DEVICE_T::I, "RANDPOISSON", "Random Poisson" }; case TYPE::I_BEHAVIORAL: return { DEVICE_T::I, "=", "Behavioral" }; case TYPE::SUBCKT: return { DEVICE_T::SUBCKT, "", "Subcircuit" }; case TYPE::XSPICE: return { DEVICE_T::XSPICE, "", "" }; case TYPE::KIBIS_DEVICE: return { DEVICE_T::KIBIS, "DEVICE", "Device" }; case TYPE::KIBIS_DRIVER_DC: return { DEVICE_T::KIBIS, "DCDRIVER", "DC driver" }; case TYPE::KIBIS_DRIVER_RECT: return { DEVICE_T::KIBIS, "RECTDRIVER", "Rectangular wave driver" }; case TYPE::KIBIS_DRIVER_PRBS: return { DEVICE_T::KIBIS, "PRBSDRIVER", "PRBS driver" }; case TYPE::RAWSPICE: return { DEVICE_T::SPICE, "", "" }; default: wxFAIL; return {}; } } SIM_MODEL::SPICE_INFO SIM_MODEL::SpiceInfo( TYPE aType ) { switch( aType ) { // | itemType | modelType | fnName | level |isDefaultLvl|hasExpr|version| // ------------------------------------------------------------------------- case TYPE::R: return { "R", "" }; case TYPE::R_POT: return { "A", "" }; case TYPE::R_BEHAVIORAL: return { "R", "", "", "0", false, true }; case TYPE::C: return { "C", "" }; case TYPE::C_BEHAVIORAL: return { "C", "", "", "0", false, true }; case TYPE::L: return { "L", "" }; case TYPE::L_BEHAVIORAL: return { "L", "", "", "0", false, true }; case TYPE::K: return { "K", "" }; //case TYPE::TLINE_Z0: return { "T" }; case TYPE::TLINE_Z0: return { "O", "LTRA" }; case TYPE::TLINE_RLGC: return { "O", "LTRA" }; case TYPE::SW_V: return { "S", "SW" }; case TYPE::SW_I: return { "W", "CSW" }; case TYPE::D: return { "D", "D" }; case TYPE::NPN_VBIC: return { "Q", "NPN", "", "4" }; case TYPE::PNP_VBIC: return { "Q", "PNP", "", "4" }; case TYPE::NPN_GUMMELPOON: return { "Q", "NPN", "", "1", true }; case TYPE::PNP_GUMMELPOON: return { "Q", "PNP", "", "1", true }; case TYPE::NPN_HICUM2: return { "Q", "NPN", "", "8" }; case TYPE::PNP_HICUM2: return { "Q", "PNP", "", "8" }; case TYPE::NJFET_SHICHMANHODGES: return { "J", "NJF", "", "1", true }; case TYPE::PJFET_SHICHMANHODGES: return { "J", "PJF", "", "1", true }; case TYPE::NJFET_PARKERSKELLERN: return { "J", "NJF", "", "2" }; case TYPE::PJFET_PARKERSKELLERN: return { "J", "PJF", "", "2" }; case TYPE::NMES_STATZ: return { "Z", "NMF", "", "1", true }; case TYPE::PMES_STATZ: return { "Z", "PMF", "", "1", true }; case TYPE::NMES_YTTERDAL: return { "Z", "NMF", "", "2" }; case TYPE::PMES_YTTERDAL: return { "Z", "PMF", "", "2" }; case TYPE::NMES_HFET1: return { "Z", "NMF", "", "5" }; case TYPE::PMES_HFET1: return { "Z", "PMF", "", "5" }; case TYPE::NMES_HFET2: return { "Z", "NMF", "", "6" }; case TYPE::PMES_HFET2: return { "Z", "PMF", "", "6" }; case TYPE::NMOS_VDMOS: return { "M", "VDMOS NCHAN" }; case TYPE::PMOS_VDMOS: return { "M", "VDMOS PCHAN" }; case TYPE::NMOS_MOS1: return { "M", "NMOS", "", "1", true }; case TYPE::PMOS_MOS1: return { "M", "PMOS", "", "1", true }; case TYPE::NMOS_MOS2: return { "M", "NMOS", "", "2" }; case TYPE::PMOS_MOS2: return { "M", "PMOS", "", "2" }; case TYPE::NMOS_MOS3: return { "M", "NMOS", "", "3" }; case TYPE::PMOS_MOS3: return { "M", "PMOS", "", "3" }; case TYPE::NMOS_BSIM1: return { "M", "NMOS", "", "4" }; case TYPE::PMOS_BSIM1: return { "M", "PMOS", "", "4" }; case TYPE::NMOS_BSIM2: return { "M", "NMOS", "", "5" }; case TYPE::PMOS_BSIM2: return { "M", "PMOS", "", "5" }; case TYPE::NMOS_MOS6: return { "M", "NMOS", "", "6" }; case TYPE::PMOS_MOS6: return { "M", "PMOS", "", "6" }; case TYPE::NMOS_BSIM3: return { "M", "NMOS", "", "8" }; case TYPE::PMOS_BSIM3: return { "M", "PMOS", "", "8" }; case TYPE::NMOS_MOS9: return { "M", "NMOS", "", "9" }; case TYPE::PMOS_MOS9: return { "M", "PMOS", "", "9" }; case TYPE::NMOS_B4SOI: return { "M", "NMOS", "", "10" }; case TYPE::PMOS_B4SOI: return { "M", "PMOS", "", "10" }; case TYPE::NMOS_BSIM4: return { "M", "NMOS", "", "14" }; case TYPE::PMOS_BSIM4: return { "M", "PMOS", "", "14" }; //case TYPE::NMOS_EKV2_6: return {}; //case TYPE::PMOS_EKV2_6: return {}; //case TYPE::NMOS_PSP: return {}; //case TYPE::PMOS_PSP: return {}; case TYPE::NMOS_B3SOIFD: return { "M", "NMOS", "", "55" }; case TYPE::PMOS_B3SOIFD: return { "M", "PMOS", "", "55" }; case TYPE::NMOS_B3SOIDD: return { "M", "NMOS", "", "56" }; case TYPE::PMOS_B3SOIDD: return { "M", "PMOS", "", "56" }; case TYPE::NMOS_B3SOIPD: return { "M", "NMOS", "", "57" }; case TYPE::PMOS_B3SOIPD: return { "M", "PMOS", "", "57" }; //case TYPE::NMOS_STAG: return {}; //case TYPE::PMOS_STAG: return {}; case TYPE::NMOS_HISIM2: return { "M", "NMOS", "", "68" }; case TYPE::PMOS_HISIM2: return { "M", "PMOS", "", "68" }; case TYPE::NMOS_HISIMHV1: return { "M", "NMOS", "", "73", false, false, "1.2.4" }; case TYPE::PMOS_HISIMHV1: return { "M", "PMOS", "", "73", false, false, "1.2.4" }; case TYPE::NMOS_HISIMHV2: return { "M", "NMOS", "", "73", false, false, "2.2.0" }; case TYPE::PMOS_HISIMHV2: return { "M", "PMOS", "", "73", false, false, "2.2.0" }; case TYPE::V: return { "V", "", "DC" }; case TYPE::V_SIN: return { "V", "", "SIN" }; case TYPE::V_PULSE: return { "V", "", "PULSE" }; case TYPE::V_EXP: return { "V", "", "EXP" }; case TYPE::V_AM: return { "V", "", "AM" }; case TYPE::V_SFFM: return { "V", "", "SFFM" }; case TYPE::V_VCL: return { "E", "", "" }; case TYPE::V_CCL: return { "H", "", "" }; case TYPE::V_PWL: return { "V", "", "PWL" }; case TYPE::V_WHITENOISE: return { "V", "", "TRNOISE" }; case TYPE::V_PINKNOISE: return { "V", "", "TRNOISE" }; case TYPE::V_BURSTNOISE: return { "V", "", "TRNOISE" }; case TYPE::V_RANDUNIFORM: return { "V", "", "TRRANDOM" }; case TYPE::V_RANDGAUSSIAN: return { "V", "", "TRRANDOM" }; case TYPE::V_RANDEXP: return { "V", "", "TRRANDOM" }; case TYPE::V_RANDPOISSON: return { "V", "", "TRRANDOM" }; case TYPE::V_BEHAVIORAL: return { "B" }; case TYPE::I: return { "I", "", "DC" }; case TYPE::I_PULSE: return { "I", "", "PULSE" }; case TYPE::I_SIN: return { "I", "", "SIN" }; case TYPE::I_EXP: return { "I", "", "EXP" }; case TYPE::I_AM: return { "V", "", "AM" }; case TYPE::I_SFFM: return { "V", "", "SFFM" }; case TYPE::I_VCL: return { "G", "", "" }; case TYPE::I_CCL: return { "F", "", "" }; case TYPE::I_PWL: return { "I", "", "PWL" }; case TYPE::I_WHITENOISE: return { "I", "", "TRNOISE" }; case TYPE::I_PINKNOISE: return { "I", "", "TRNOISE" }; case TYPE::I_BURSTNOISE: return { "I", "", "TRNOISE" }; case TYPE::I_RANDUNIFORM: return { "I", "", "TRRANDOM" }; case TYPE::I_RANDGAUSSIAN: return { "I", "", "TRRANDOM" }; case TYPE::I_RANDEXP: return { "I", "", "TRRANDOM" }; case TYPE::I_RANDPOISSON: return { "I", "", "TRRANDOM" }; case TYPE::I_BEHAVIORAL: return { "B" }; case TYPE::SUBCKT: return { "X" }; case TYPE::XSPICE: return { "A" }; case TYPE::KIBIS_DEVICE: return { "X" }; case TYPE::KIBIS_DRIVER_DC: return { "X" }; case TYPE::KIBIS_DRIVER_RECT: return { "X" }; case TYPE::KIBIS_DRIVER_PRBS: return { "X" }; case TYPE::NONE: case TYPE::RAWSPICE: return {}; default: wxFAIL; return {}; } } template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, REPORTER& aReporter ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, REPORTER& aReporter ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields, REPORTER& aReporter ) { std::string deviceTypeFieldValue = GetFieldValue( &aFields, SIM_DEVICE_FIELD ); std::string typeFieldValue = GetFieldValue( &aFields, SIM_DEVICE_SUBTYPE_FIELD ); if( deviceTypeFieldValue != "" ) { for( TYPE type : TYPE_ITERATOR() ) { if( typeFieldValue == TypeInfo( type ).fieldValue ) { if( deviceTypeFieldValue == DeviceInfo( TypeInfo( type ).deviceType ).fieldValue ) return type; } } } if( typeFieldValue != "" ) return TYPE::NONE; if( aFields.size() > REFERENCE_FIELD ) { aReporter.Report( wxString::Format( _( "No simulation model definition found for " "symbol '%s'." ), aFields[REFERENCE_FIELD].GetText() ), RPT_SEVERITY_ERROR ); } else { aReporter.Report( _( "No simulation model definition found." ), RPT_SEVERITY_ERROR ); } return TYPE::NONE; } template <> void SIM_MODEL::ReadDataFields( const std::vector* aFields, const std::vector& aPins ) { doReadDataFields( aFields, aPins ); } template <> void SIM_MODEL::ReadDataFields( const std::vector* aFields, const std::vector& aPins ) { doReadDataFields( aFields, aPins ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) const { doWriteFields( aFields ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) const { doWriteFields( aFields ); } std::unique_ptr SIM_MODEL::Create( TYPE aType, const std::vector& aPins, REPORTER& aReporter ) { std::unique_ptr model = Create( aType ); try { // Passing nullptr to ReadDataFields will make it act as if all fields were empty. model->ReadDataFields( static_cast*>( nullptr ), aPins ); } catch( IO_ERROR& ) { wxFAIL_MSG( "Shouldn't throw reading empty fields!" ); } return model; } std::unique_ptr SIM_MODEL::Create( const SIM_MODEL* aBaseModel, const std::vector& aPins, REPORTER& aReporter ) { std::unique_ptr model; if( aBaseModel ) { TYPE type = aBaseModel->GetType(); if( dynamic_cast( aBaseModel ) ) model = std::make_unique( type ); else if( dynamic_cast< const SIM_MODEL_RAW_SPICE*>( aBaseModel ) ) model = std::make_unique(); else model = Create( type ); model->SetBaseModel( *aBaseModel ); } else // No base model means the model wasn't found in the library, so create a fallback { model = std::make_unique( TYPE::NONE ); } try { model->ReadDataFields( static_cast*>( nullptr ), aPins ); } catch( IO_ERROR& ) { wxFAIL_MSG( "Shouldn't throw reading empty fields!" ); } return model; } template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL* aBaseModel, const std::vector& aPins, const std::vector& aFields, REPORTER& aReporter ) { std::unique_ptr model; if( aBaseModel ) { NULL_REPORTER devnull; TYPE type = aBaseModel->GetType(); // No REPORTER here; we're just checking to see if we have an override if( ReadTypeFromFields( aFields, devnull ) != TYPE::NONE ) type = ReadTypeFromFields( aFields, devnull ); if( dynamic_cast( aBaseModel ) ) model = std::make_unique( type ); else if( dynamic_cast< const SIM_MODEL_RAW_SPICE*>( aBaseModel ) ) model = std::make_unique(); else model = Create( type ); model->SetBaseModel( *aBaseModel ); } else // No base model means the model wasn't found in the library, so create a fallback { TYPE type = ReadTypeFromFields( aFields, aReporter ); model = std::make_unique( type ); } try { model->ReadDataFields( &aFields, aPins ); } catch( IO_ERROR& err ) { aReporter.Report( wxString::Format( _( "Error reading simulation model from " "symbol '%s':\n%s" ), aFields[REFERENCE_FIELD].GetText(), err.Problem() ), RPT_SEVERITY_ERROR ); } return model; } template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL* aBaseModel, const std::vector& aPins, const std::vector& aFields, REPORTER& aReporter ); template std::unique_ptr SIM_MODEL::Create( const SIM_MODEL* aBaseModel, const std::vector& aPins, const std::vector& aFields, REPORTER& aReporter ); template std::unique_ptr SIM_MODEL::Create( const std::vector& aFields, const std::vector& aPins, bool aResolved, REPORTER& aReporter ) { TYPE type = ReadTypeFromFields( aFields, aReporter ); std::unique_ptr model = SIM_MODEL::Create( type ); try { model->ReadDataFields( &aFields, aPins ); } catch( const IO_ERROR& parse_err ) { if( !aResolved ) { aReporter.Report( parse_err.What(), RPT_SEVERITY_ERROR ); return model; } // Just because we can't parse it doesn't mean that a SPICE interpreter can't. Fall // back to a raw spice code model. std::string modelData = GetFieldValue( &aFields, SIM_PARAMS_FIELD ); if( modelData.empty() ) modelData = GetFieldValue( &aFields, SIM_VALUE_FIELD ); model = std::make_unique( modelData ); try { model->createPins( aPins ); model->m_serializer->ParsePins( GetFieldValue( &aFields, SIM_PINS_FIELD ) ); } catch( const IO_ERROR& err ) { // We own the pin syntax, so if we can't parse it then there's an error. aReporter.Report( wxString::Format( _( "Error reading simulation model from " "symbol '%s':\n%s" ), aFields[REFERENCE_FIELD].GetText(), err.Problem() ), RPT_SEVERITY_ERROR ); } } return model; } template std::unique_ptr SIM_MODEL::Create( const std::vector& aFields, const std::vector& aPins, bool aResolved, REPORTER& aReporter ); template std::unique_ptr SIM_MODEL::Create( const std::vector& aFields, const std::vector& aPins, bool aResolved, REPORTER& aReporter ); template std::string SIM_MODEL::GetFieldValue( const std::vector* aFields, const wxString& aFieldName, bool aResolve ) { static_assert( std::is_same::value || std::is_same::value ); if( !aFields ) return ""; // Should not happen, T=void specialization will be called instead. for( const T& field : *aFields ) { if( field.GetName() == aFieldName ) { return aResolve ? field.GetShownText( false ).ToStdString() : field.GetText().ToStdString(); } } return ""; } // This specialization is used when no fields are passed. template <> std::string SIM_MODEL::GetFieldValue( const std::vector* aFields, const wxString& aFieldName, bool aResolve ) { return ""; } template void SIM_MODEL::SetFieldValue( std::vector& aFields, const wxString& aFieldName, const std::string& aValue ) { static_assert( std::is_same::value || std::is_same::value ); auto fieldIt = std::find_if( aFields.begin(), aFields.end(), [&]( const T& f ) { return f.GetName() == aFieldName; } ); if( fieldIt != aFields.end() ) { if( aValue == "" ) aFields.erase( fieldIt ); else fieldIt->SetText( aValue ); return; } if( aValue == "" ) return; if constexpr( std::is_same::value ) { wxASSERT( aFields.size() >= 1 ); SCH_ITEM* parent = static_cast( aFields.at( 0 ).GetParent() ); aFields.emplace_back( VECTOR2I(), aFields.size(), parent, aFieldName ); } else if constexpr( std::is_same::value ) { aFields.emplace_back( aFields.size(), aFieldName ); } aFields.back().SetText( aValue ); } template void SIM_MODEL::SetFieldValue( std::vector& aFields, const wxString& aFieldName, const std::string& aValue ); template void SIM_MODEL::SetFieldValue( std::vector& aFields, const wxString& aFieldName, const std::string& aValue ); SIM_MODEL::~SIM_MODEL() = default; void SIM_MODEL::AddPin( const PIN& aPin ) { m_pins.push_back( aPin ); } void SIM_MODEL::ClearPins() { m_pins.clear(); } int SIM_MODEL::FindModelPinIndex( const std::string& aSymbolPinNumber ) { for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex ) { if( GetPin( modelPinIndex ).symbolPinNumber == aSymbolPinNumber ) return modelPinIndex; } return PIN::NOT_CONNECTED; } void SIM_MODEL::AddParam( const PARAM::INFO& aInfo ) { m_params.emplace_back( aInfo ); // Enums are initialized with their default values. if( aInfo.enumValues.size() >= 1 ) m_params.back().value = aInfo.defaultValue; } void SIM_MODEL::SetBaseModel( const SIM_MODEL& aBaseModel ) { wxASSERT_MSG( GetType() == aBaseModel.GetType(), wxS( "Simulation model type must be the same as its base class!" ) ); m_baseModel = &aBaseModel; } std::vector> SIM_MODEL::GetPins() const { std::vector> pins; for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex ) pins.emplace_back( GetPin( modelPinIndex ) ); return pins; } void SIM_MODEL::SetPinSymbolPinNumber( int aPinIndex, const std::string& aSymbolPinNumber ) { if( aPinIndex >= 0 && aPinIndex < (int) m_pins.size() ) m_pins.at( aPinIndex ).symbolPinNumber = aSymbolPinNumber; } void SIM_MODEL::SetPinSymbolPinNumber( const std::string& aPinName, const std::string& aSymbolPinNumber ) { for( PIN& pin : m_pins ) { if( pin.name == aPinName ) { pin.symbolPinNumber = aSymbolPinNumber; return; } } // If aPinName wasn't in fact a name, see if it's a raw (1-based) index. This is required // for legacy files which didn't use pin names. int aPinIndex = (int) strtol( aPinName.c_str(), nullptr, 10 ); if( aPinIndex < 1 || aPinIndex > (int) m_pins.size() ) THROW_IO_ERROR( wxString::Format( _( "Unknown simulation model pin '%s'" ), aPinName ) ); m_pins[ --aPinIndex /* convert to 0-based */ ].symbolPinNumber = aSymbolPinNumber; } const SIM_MODEL::PARAM& SIM_MODEL::GetParam( unsigned aParamIndex ) const { if( m_baseModel && m_params.at( aParamIndex ).value == "" ) return m_baseModel->GetParam( aParamIndex ); else return m_params.at( aParamIndex ); } bool SIM_MODEL::PARAM::INFO::Matches( const std::string& aParamName ) const { return boost::iequals( name, aParamName ); } int SIM_MODEL::doFindParam( const std::string& aParamName ) const { std::vector> params = GetParams(); for( int ii = 0; ii < (int) params.size(); ++ii ) { if( params[ii].get().Matches( aParamName ) ) return ii; } return -1; } const SIM_MODEL::PARAM* SIM_MODEL::FindParam( const std::string& aParamName ) const { int idx = doFindParam( aParamName ); return idx >= 0 ? &GetParam( idx ) : nullptr; } std::vector> SIM_MODEL::GetParams() const { std::vector> params; for( int i = 0; i < GetParamCount(); ++i ) params.emplace_back( GetParam( i ) ); return params; } const SIM_MODEL::PARAM& SIM_MODEL::GetParamOverride( unsigned aParamIndex ) const { return m_params.at( aParamIndex ); } const SIM_MODEL::PARAM& SIM_MODEL::GetBaseParam( unsigned aParamIndex ) const { if( m_baseModel ) return m_baseModel->GetParam( aParamIndex ); else return m_params.at( aParamIndex ); } void SIM_MODEL::doSetParamValue( int aParamIndex, const std::string& aValue ) { m_params.at( aParamIndex ).value = aValue; } void SIM_MODEL::SetParamValue( int aParamIndex, const std::string& aValue, SIM_VALUE::NOTATION aNotation ) { std::string value = aValue; if( aNotation != SIM_VALUE::NOTATION::SI || aValue.find( ',' ) != std::string::npos ) value = SIM_VALUE::ConvertNotation( value, aNotation, SIM_VALUE::NOTATION::SI ); doSetParamValue( aParamIndex, value ); } void SIM_MODEL::SetParamValue( const std::string& aParamName, const std::string& aValue, SIM_VALUE::NOTATION aNotation ) { int idx = doFindParam( aParamName ); if( idx < 0 ) THROW_IO_ERROR( wxString::Format( "Unknown simulation model parameter '%s'", aParamName ) ); SetParamValue( idx, aValue, aNotation ); } std::unique_ptr SIM_MODEL::Create( TYPE aType ) { switch( aType ) { case TYPE::R: case TYPE::C: case TYPE::L: return std::make_unique( aType ); case TYPE::R_POT: return std::make_unique(); case TYPE::K: return std::make_unique(); case TYPE::R_BEHAVIORAL: case TYPE::C_BEHAVIORAL: case TYPE::L_BEHAVIORAL: case TYPE::V_BEHAVIORAL: case TYPE::I_BEHAVIORAL: return std::make_unique( aType ); case TYPE::TLINE_Z0: case TYPE::TLINE_RLGC: return std::make_unique( aType ); case TYPE::SW_V: case TYPE::SW_I: return std::make_unique( aType ); case TYPE::V: case TYPE::I: case TYPE::V_SIN: case TYPE::I_SIN: case TYPE::V_PULSE: case TYPE::I_PULSE: case TYPE::V_EXP: case TYPE::I_EXP: case TYPE::V_AM: case TYPE::I_AM: case TYPE::V_SFFM: case TYPE::I_SFFM: case TYPE::V_VCL: case TYPE::V_CCL: case TYPE::V_PWL: case TYPE::I_VCL: case TYPE::I_CCL: case TYPE::I_PWL: case TYPE::V_WHITENOISE: case TYPE::I_WHITENOISE: case TYPE::V_PINKNOISE: case TYPE::I_PINKNOISE: case TYPE::V_BURSTNOISE: case TYPE::I_BURSTNOISE: case TYPE::V_RANDUNIFORM: case TYPE::I_RANDUNIFORM: case TYPE::V_RANDGAUSSIAN: case TYPE::I_RANDGAUSSIAN: case TYPE::V_RANDEXP: case TYPE::I_RANDEXP: case TYPE::V_RANDPOISSON: case TYPE::I_RANDPOISSON: return std::make_unique( aType ); case TYPE::SUBCKT: return std::make_unique(); case TYPE::XSPICE: return std::make_unique( aType ); case TYPE::KIBIS_DEVICE: case TYPE::KIBIS_DRIVER_DC: case TYPE::KIBIS_DRIVER_RECT: case TYPE::KIBIS_DRIVER_PRBS: return std::make_unique( aType ); case TYPE::RAWSPICE: return std::make_unique(); default: return std::make_unique( aType ); } } SIM_MODEL::SIM_MODEL( TYPE aType ) : SIM_MODEL( aType, std::make_unique( *this ), std::make_unique( *this ) ) { } SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr aSpiceGenerator ) : SIM_MODEL( aType, std::move( aSpiceGenerator ), std::make_unique( *this ) ) { } SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr aSpiceGenerator, std::unique_ptr aSerializer ) : m_baseModel( nullptr ), m_serializer( std::move( aSerializer ) ), m_spiceGenerator( std::move( aSpiceGenerator ) ), m_type( aType ), m_isEnabled( true ), m_isStoredInValue( false ) { } void SIM_MODEL::createPins( const std::vector& aSymbolPins ) { // Default pin sequence: model pins are the same as symbol pins. // Excess model pins are set as Not Connected. // Note that intentionally nothing is added if `GetPinNames()` returns an empty vector. // SIM_MODEL pins must be ordered by symbol pin numbers -- this is assumed by the code that // accesses them. std::vector pinNames = GetPinNames(); for( unsigned modelPinIndex = 0; modelPinIndex < pinNames.size(); ++modelPinIndex ) { wxString pinName = pinNames[ modelPinIndex ]; bool optional = false; if( pinName.StartsWith( '<' ) && pinName.EndsWith( '>' ) ) { pinName = pinName.Mid( 1, pinName.Length() - 2 ); optional = true; } if( modelPinIndex < aSymbolPins.size() ) { AddPin( { pinNames.at( modelPinIndex ), aSymbolPins[ modelPinIndex ]->GetNumber().ToStdString() } ); } else if( !optional ) { AddPin( { pinNames.at( modelPinIndex ), "" } ); } } } template void SIM_MODEL::doReadDataFields( const std::vector* aFields, const std::vector& aPins ) { bool diffMode = GetFieldValue( aFields, SIM_LIBRARY_KIBIS::DIFF_FIELD ) == "1"; SwitchSingleEndedDiff( diffMode ); m_serializer->ParseEnable( GetFieldValue( aFields, SIM_LEGACY_ENABLE_FIELD_V7 ) ); createPins( aPins ); m_serializer->ParsePins( GetFieldValue( aFields, SIM_PINS_FIELD ) ); std::string paramsField = GetFieldValue( aFields, SIM_PARAMS_FIELD ); if( !m_serializer->ParseParams( paramsField ) ) m_serializer->ParseValue( GetFieldValue( aFields, SIM_VALUE_FIELD ) ); } template void SIM_MODEL::doWriteFields( std::vector& aFields ) const { // Remove duplicate fields: they are at the end of list for( size_t ii = aFields.size() - 1; ii > 0; ii-- ) { wxString currFieldName = aFields[ii].GetName(); auto end_candidate_list = aFields.begin() + ii - 1; auto fieldIt = std::find_if( aFields.begin(), end_candidate_list, [&]( const T& f ) { return f.GetName() == currFieldName; } ); // If duplicate field found: remove current checked item if( fieldIt != end_candidate_list ) aFields.erase( aFields.begin() + ii ); } SetFieldValue( aFields, SIM_DEVICE_FIELD, m_serializer->GenerateDevice() ); SetFieldValue( aFields, SIM_DEVICE_SUBTYPE_FIELD, m_serializer->GenerateDeviceSubtype() ); SetFieldValue( aFields, SIM_LEGACY_ENABLE_FIELD_V7, m_serializer->GenerateEnable() ); SetFieldValue( aFields, SIM_PINS_FIELD, m_serializer->GeneratePins() ); SetFieldValue( aFields, SIM_PARAMS_FIELD, m_serializer->GenerateParams() ); if( IsStoredInValue() ) SetFieldValue( aFields, SIM_VALUE_FIELD, m_serializer->GenerateValue() ); // New fields have a ID = -1 (undefined). so replace the undefined ID // by a degined ID int lastFreeId = MANDATORY_FIELDS; // Search for the first available value: for( auto& fld : aFields ) { if( fld.GetId() >= lastFreeId ) lastFreeId = fld.GetId() + 1; } // Set undefined IDs to a better value for( auto& fld : aFields ) { if( fld.GetId() < 0 ) fld.SetId( lastFreeId++ ); } } bool SIM_MODEL::requiresSpiceModelLine( const SPICE_ITEM& aItem ) const { // SUBCKTs are a single level; there's never a baseModel. if( m_type == TYPE::SUBCKT ) return false; // Model must be written if there's no base model or the base model is an internal model if( !m_baseModel || aItem.baseModelName == "" ) return true; for( int ii = 0; ii < GetParamCount(); ++ii ) { const PARAM& param = m_params[ii]; // Instance parameters are written in item lines if( param.info.isSpiceInstanceParam ) continue; // Empty parameters are interpreted as default-value if ( param.value == "" ) continue; const SIM_MODEL* baseModel = dynamic_cast( m_baseModel ); wxCHECK( baseModel, false ); std::string baseValue = baseModel->m_params[ii].value; if( param.value == baseValue ) continue; // One more check for equivalence, mostly for early 7.0 files which wrote all parameters // to the Sim.Params field in normalized format if( param.value == SIM_VALUE::Normalize( SIM_VALUE::ToDouble( baseValue ) ) ) continue; // Overrides must be written return true; } return false; } template bool SIM_MODEL::InferSimModel( T_symbol& aSymbol, std::vector* aFields, bool aResolve, SIM_VALUE_GRAMMAR::NOTATION aNotation, wxString* aDeviceType, wxString* aModelType, wxString* aModelParams, wxString* aPinMap ) { // SPICE notation is case-insensitive and locale-insensitve. This means it uses "Meg" for // mega (as both 'M' and 'm' must mean milli), and "." (always) for a decimal separator. // // KiCad's GUI uses the SI-standard 'M' for mega and 'm' for milli, and a locale-dependent // decimal separator. // // KiCad's Sim.* fields are in-between, using SI notation but a fixed decimal separator. // // So where does that leave inferred value fields? Behavioural models must be passed in // straight, because we don't (at present) know how to parse them. // // However, behavioural models _look_ like SPICE code, so it's not a stretch to expect them // to _be_ SPICE code. A passive capacitor model on the other hand, just looks like a // capacitance. Some users might expect 3,3u to work, while others might expect 3,300uF to // work. // // Checking the locale isn't reliable because it assumes the current computer's locale is // the same as the locale the schematic was authored in -- something that isn't true, for // instance, when sharing designs over DIYAudio.com. // // However, even the E192 series of preferred values uses only 3 significant digits, so a ',' // or '.' followed by 3 digits _could_ reasonably-reliably be interpreted as a thousands // separator. // // Or we could just say inferred values are locale-independent, with "." used as a decimal // separator and "," used as a thousands separator. 3,300uF works, but 3,3 does not. auto convertNotation = [&]( const wxString& units ) -> wxString { /// KiCad Spice PEGTL only handles ASCII /// Although these two look the same, they are U+03BC and U+00B5 if( units == wxS( "µ" ) || units == wxS( "μ" ) ) return wxS( "u" ); if( aNotation == SIM_VALUE_GRAMMAR::NOTATION::SPICE ) { if( units == wxT( "M" ) ) return wxT( "Meg" ); } else if( aNotation == SIM_VALUE_GRAMMAR::NOTATION::SI ) { if( units.Capitalize() == wxT( "Meg" ) ) return wxT( "M" ); } return units; }; auto convertSeparators = []( wxString* mantissa ) { mantissa->Replace( wxS( " " ), wxEmptyString ); wxChar ambiguousSeparator = '?'; wxChar thousandsSeparator = '?'; bool thousandsSeparatorFound = false; wxChar decimalSeparator = '?'; bool decimalSeparatorFound = false; int digits = 0; for( int ii = (int) mantissa->length() - 1; ii >= 0; --ii ) { wxChar c = mantissa->GetChar( ii ); if( c >= '0' && c <= '9' ) { digits += 1; } else if( c == '.' || c == ',' ) { if( decimalSeparator != '?' || thousandsSeparator != '?' ) { // We've previously found a non-ambiguous separator... if( c == decimalSeparator ) { if( thousandsSeparatorFound ) return false; // decimal before thousands else if( decimalSeparatorFound ) return false; // more than one decimal else decimalSeparatorFound = true; } else if( c == thousandsSeparator ) { if( digits != 3 ) return false; // thousands not followed by 3 digits else thousandsSeparatorFound = true; } } else if( ambiguousSeparator != '?' ) { // We've previously found a separator, but we don't know for sure // which... if( c == ambiguousSeparator ) { // They both must be thousands separators thousandsSeparator = ambiguousSeparator; thousandsSeparatorFound = true; decimalSeparator = c == '.' ? ',' : '.'; } else { // The first must have been a decimal, and this must be a // thousands. decimalSeparator = ambiguousSeparator; decimalSeparatorFound = true; thousandsSeparator = c; thousandsSeparatorFound = true; } } else { // This is the first separator... // If it's preceeded by a '0' (only), or if it's followed by some // number of digits not equal to 3, then it -must- be a decimal // separator. // // In all other cases we don't really know what it is yet. if( ( ii == 1 && mantissa->GetChar( 0 ) == '0' ) || digits != 3 ) { decimalSeparator = c; decimalSeparatorFound = true; thousandsSeparator = c == '.' ? ',' : '.'; } else { ambiguousSeparator = c; } } digits = 0; } else { digits = 0; } } // If we found nothing difinitive then we have to assume SPICE-native syntax if( decimalSeparator == '?' && thousandsSeparator == '?' ) { decimalSeparator = '.'; thousandsSeparator = ','; } mantissa->Replace( thousandsSeparator, wxEmptyString ); mantissa->Replace( decimalSeparator, '.' ); return true; }; wxString prefix = aSymbol.GetPrefix(); wxString library = GetFieldValue( aFields, SIM_LIBRARY_FIELD, aResolve ); wxString modelName = GetFieldValue( aFields, SIM_NAME_FIELD, aResolve ); wxString value = GetFieldValue( aFields, SIM_VALUE_FIELD, aResolve ); std::vector pins = aSymbol.GetAllLibPins(); *aDeviceType = GetFieldValue( aFields, SIM_DEVICE_FIELD, aResolve ); *aModelType = GetFieldValue( aFields, SIM_DEVICE_SUBTYPE_FIELD, aResolve ); *aModelParams = GetFieldValue( aFields, SIM_PARAMS_FIELD, aResolve ); *aPinMap = GetFieldValue( aFields, SIM_PINS_FIELD, aResolve ); if( pins.size() != 2 ) return false; if( ( ( *aDeviceType == "R" || *aDeviceType == "L" || *aDeviceType == "C" ) && aModelType->IsEmpty() ) || ( library.IsEmpty() && modelName.IsEmpty() && aDeviceType->IsEmpty() && aModelType->IsEmpty() && !value.IsEmpty() && ( prefix.StartsWith( "R" ) || prefix.StartsWith( "L" ) || prefix.StartsWith( "C" ) ) ) ) { if( aModelParams->IsEmpty() ) { wxRegEx idealVal( wxT( "^" "([0-9\\,\\. ]+)" "([fFpPnNuUmMkKgGtTμµ𝛍𝜇𝝁 ]|M(e|E)(g|G))?" "([fFhHΩΩ𝛀𝛺𝝮rR]|ohm)?" "([-1-9 ]*)" "([fFhHΩΩ𝛀𝛺𝝮rR]|ohm)?" "$" ) ); if( idealVal.Matches( value ) ) // Ideal { wxString valueMantissa( idealVal.GetMatch( value, 1 ) ); wxString valueExponent( idealVal.GetMatch( value, 2 ) ); wxString valueFraction( idealVal.GetMatch( value, 6 ) ); if( !convertSeparators( &valueMantissa ) ) return false; if( valueMantissa.Contains( wxT( "." ) ) || valueFraction.IsEmpty() ) { aModelParams->Printf( wxT( "%s=\"%s%s\"" ), prefix.Left(1).Lower(), valueMantissa, convertNotation( valueExponent ) ); } else { aModelParams->Printf( wxT( "%s=\"%s.%s%s\"" ), prefix.Left(1).Lower(), valueMantissa, valueFraction, convertNotation( valueExponent ) ); } } else // Behavioral { *aModelType = wxT( "=" ); aModelParams->Printf( wxT( "%s=\"%s\"" ), prefix.Left(1).Lower(), value ); } } if( aDeviceType->IsEmpty() ) *aDeviceType = prefix.Left( 1 ); if( aPinMap->IsEmpty() ) aPinMap->Printf( wxT( "%s=+ %s=-" ), pins[0]->GetNumber(), pins[1]->GetNumber() ); return true; } if( ( ( *aDeviceType == wxT( "V" ) || *aDeviceType == wxT( "I" ) ) && ( aModelType->IsEmpty() || *aModelType == wxT( "DC" ) ) ) || ( aDeviceType->IsEmpty() && aModelType->IsEmpty() && !value.IsEmpty() && ( prefix.StartsWith( "V" ) || prefix.StartsWith( "I" ) ) ) ) { if( !value.IsEmpty() ) { wxString param = "dc"; if( value.StartsWith( wxT( "DC " ) ) ) { value = value.Right( value.Length() - 3 ); } else if( value.StartsWith( wxT( "AC " ) ) ) { value = value.Right( value.Length() - 3 ); param = "ac"; } wxRegEx sourceVal( wxT( "^" "([0-9\\,\\. ]+)" "([fFpPnNuUmMkKgGtTμµ𝛍𝜇𝝁 ]|M(e|E)(g|G))?" "([vVaA])?" "([-1-9 ]*)" "([vVaA])?" "$" ) ); if( sourceVal.Matches( value ) ) { wxString valueMantissa( sourceVal.GetMatch( value, 1 ) ); wxString valueExponent( sourceVal.GetMatch( value, 2 ) ); wxString valueFraction( sourceVal.GetMatch( value, 6 ) ); if( !convertSeparators( &valueMantissa ) ) return false; if( valueMantissa.Contains( wxT( "." ) ) || valueFraction.IsEmpty() ) { aModelParams->Printf( wxT( "%s=\"%s%s\" %s" ), param, valueMantissa, convertNotation( valueExponent ), *aModelParams ); } else { aModelParams->Printf( wxT( "%s=\"%s.%s%s\" %s" ), param, valueMantissa, valueFraction, convertNotation( valueExponent ), *aModelParams ); } } else { aModelParams->Printf( wxT( "%s=\"%s\" %s" ), param, value, *aModelParams ); } } if( aDeviceType->IsEmpty() ) *aDeviceType = prefix.Left( 1 ); if( aModelType->IsEmpty() ) *aModelType = wxT( "DC" ); if( aPinMap->IsEmpty() ) aPinMap->Printf( wxT( "%s=+ %s=-" ), pins[0]->GetNumber(), pins[1]->GetNumber() ); return true; } return false; } template bool SIM_MODEL::InferSimModel( SCH_SYMBOL& aSymbol, std::vector* aFields, bool aResolve, SIM_VALUE_GRAMMAR::NOTATION aNotation, wxString* aDeviceType, wxString* aModelType, wxString* aModelParams, wxString* aPinMap ); template bool SIM_MODEL::InferSimModel( LIB_SYMBOL& aSymbol, std::vector* aFields, bool aResolve, SIM_VALUE_GRAMMAR::NOTATION aNotation, wxString* aDeviceType, wxString* aModelType, wxString* aModelParams, wxString* aPinMap ); template void SIM_MODEL::MigrateSimModel( T_symbol& aSymbol, const PROJECT* aProject ) { class FIELD_INFO { public: FIELD_INFO() { m_Attributes.m_Visible = false; m_Attributes.m_Size = VECTOR2I( DEFAULT_SIZE_TEXT * schIUScale.IU_PER_MILS, DEFAULT_SIZE_TEXT * schIUScale.IU_PER_MILS ); }; FIELD_INFO( const wxString& aText, T_field* aField ) : m_Text( aText ), m_Attributes( aField->GetAttributes() ), m_Pos( aField->GetPosition() ) {} bool IsEmpty() { return m_Text.IsEmpty(); } T_field CreateField( T_symbol* aSymbol, const wxString& aFieldName ) { T_field field( aSymbol, -1, aFieldName ); field.SetText( m_Text ); field.SetAttributes( m_Attributes ); field.SetPosition( m_Pos ); return field; } public: wxString m_Text; TEXT_ATTRIBUTES m_Attributes; VECTOR2I m_Pos; }; T_field* existing_deviceField = aSymbol.FindField( SIM_DEVICE_FIELD ); T_field* existing_deviceSubtypeField = aSymbol.FindField( SIM_DEVICE_SUBTYPE_FIELD ); T_field* existing_pinsField = aSymbol.FindField( SIM_PINS_FIELD ); T_field* existing_paramsField = aSymbol.FindField( SIM_PARAMS_FIELD ); wxString existing_deviceSubtype; if( existing_deviceSubtypeField ) existing_deviceSubtype = existing_deviceSubtypeField->GetShownText( false ).Upper(); if( existing_deviceField || existing_deviceSubtypeField || existing_pinsField || existing_paramsField ) { // Has a current (V7+) model field. // Up until 7.0RC2 we used '+' and '-' for potentiometer pins, which doesn't match // SPICE. Here we remap them to 'r0' and 'r1'. if( existing_deviceSubtype == wxS( "POT" ) ) { if( existing_pinsField ) { wxString pinMap = existing_pinsField->GetText(); pinMap.Replace( wxS( "=+" ), wxS( "=r1" ) ); pinMap.Replace( wxS( "=-" ), wxS( "=r0" ) ); existing_pinsField->SetText( pinMap ); } } // Up until 8.0RC1 random voltage/current sources were a bit of a mess. if( existing_deviceSubtype.StartsWith( wxS( "RAND" ) ) ) { // Re-fetch value without resolving references. If it's an indirect value then we // can't migrate it. existing_deviceSubtype = existing_deviceSubtypeField->GetText().Upper(); if( existing_deviceSubtype.Replace( wxS( "NORMAL" ), wxS( "GAUSSIAN" ) ) ) existing_deviceSubtypeField->SetText( existing_deviceSubtype ); if( existing_paramsField ) { wxString params = existing_paramsField->GetText().Lower(); size_t count = 0; // We used to support 'min' and 'max' instead of 'range' and 'offset', but we // wrote all 4 to the netlist which would cause ngspice to barf, so no one has // working documents with min and max specified. Just delete them if they're // uninitialized. count += params.Replace( wxS( "min=0 " ), wxEmptyString ); count += params.Replace( wxS( "max=0 " ), wxEmptyString ); // We used to use 'dt', but the correct ngspice name is 'ts'. count += params.Replace( wxS( "dt=" ), wxS( "ts=" ) ); if( count ) existing_paramsField->SetText( params ); } } // Up until 8.0.1 we treated a mutual inductance statement as a type of inductor -- // which is confusing because it doesn't represent a device at all. if( existing_deviceSubtype == wxS( "MUTUAL" ) ) { if( existing_deviceSubtypeField ) // Can't be null, but Coverity doesn't know that aSymbol.RemoveField( existing_deviceSubtypeField ); if( existing_deviceField ) { existing_deviceField->SetText( wxS( "K" ) ); } else { FIELD_INFO deviceFieldInfo; deviceFieldInfo.m_Text = wxS( "K" ); T_field deviceField = deviceFieldInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD ); aSymbol.AddField( deviceField ); } } return; } auto getSIValue = []( T_field* aField ) { if( !aField ) // no, not really, but it keeps Coverity happy return wxString( wxEmptyString ); wxRegEx regex( wxT( "([^a-z])(M)(e|E)(g|G)($|[^a-z])" ) ); wxString value = aField->GetText(); // Keep prefix, M, and suffix, but drop e|E and g|G regex.ReplaceAll( &value, wxT( "\\1\\2\\5" ) ); return value; }; auto generateDefaultPinMapFromSymbol = []( const std::vector& sourcePins ) { wxString pinMap; // If we're creating the pinMap from the symbol it means we don't know what the // SIM_MODEL's pin names are, so just use indexes. for( unsigned ii = 0; ii < sourcePins.size(); ++ii ) { if( ii > 0 ) pinMap.Append( wxS( " " ) ); pinMap.Append( wxString::Format( wxT( "%s=%u" ), sourcePins[ii]->GetNumber(), ii + 1 ) ); } return pinMap; }; wxString prefix = aSymbol.GetPrefix(); T_field* valueField = aSymbol.FindField( wxT( "Value" ) ); std::vector sourcePins = aSymbol.GetAllLibPins(); std::sort( sourcePins.begin(), sourcePins.end(), []( const LIB_PIN* lhs, const LIB_PIN* rhs ) { return StrNumCmp( lhs->GetNumber(), rhs->GetNumber(), true ) < 0; } ); FIELD_INFO deviceInfo; FIELD_INFO modelInfo; FIELD_INFO deviceSubtypeInfo; FIELD_INFO libInfo; FIELD_INFO spiceParamsInfo; FIELD_INFO pinMapInfo; bool modelFromValueField = false; if( aSymbol.FindField( SIM_LEGACY_PRIMITIVE_FIELD ) || aSymbol.FindField( SIM_LEGACY_PINS_FIELD ) || aSymbol.FindField( SIM_LEGACY_MODEL_FIELD ) || aSymbol.FindField( SIM_LEGACY_ENABLE_FIELD ) || aSymbol.FindField( SIM_LEGACY_LIBRARY_FIELD ) ) { if( T_field* primitiveField = aSymbol.FindField( SIM_LEGACY_PRIMITIVE_FIELD ) ) { deviceInfo = FIELD_INFO( primitiveField->GetText(), primitiveField ); aSymbol.RemoveField( primitiveField ); } if( T_field* nodeSequenceField = aSymbol.FindField( SIM_LEGACY_PINS_FIELD ) ) { const wxString delimiters( "{:,; }" ); const wxString& nodeSequence = nodeSequenceField->GetText(); wxString pinMap; if( nodeSequence != "" ) { wxStringTokenizer tkz( nodeSequence, delimiters ); for( long modelPinNumber = 1; tkz.HasMoreTokens(); ++modelPinNumber ) { long symbolPinNumber = 1; tkz.GetNextToken().ToLong( &symbolPinNumber ); if( modelPinNumber != 1 ) pinMap.Append( " " ); pinMap.Append( wxString::Format( "%ld=%ld", symbolPinNumber, modelPinNumber ) ); } } pinMapInfo = FIELD_INFO( pinMap, nodeSequenceField ); aSymbol.RemoveField( nodeSequenceField ); } if( T_field* modelField = aSymbol.FindField( SIM_LEGACY_MODEL_FIELD ) ) { modelInfo = FIELD_INFO( getSIValue( modelField ), modelField ); aSymbol.RemoveField( modelField ); } else if( valueField ) { modelInfo = FIELD_INFO( getSIValue( valueField ), valueField ); modelFromValueField = true; } if( T_field* libFileField = aSymbol.FindField( SIM_LEGACY_LIBRARY_FIELD ) ) { libInfo = FIELD_INFO( libFileField->GetText(), libFileField ); aSymbol.RemoveField( libFileField ); } } else { // Auto convert some legacy fields used in the middle of 7.0 development... if( T_field* legacyType = aSymbol.FindField( wxT( "Sim_Type" ) ) ) { legacyType->SetName( SIM_DEVICE_SUBTYPE_FIELD ); } if( T_field* legacyDevice = aSymbol.FindField( wxT( "Sim_Device" ) ) ) { legacyDevice->SetName( SIM_DEVICE_FIELD ); } if( T_field* legacyPins = aSymbol.FindField( wxT( "Sim_Pins" ) ) ) { bool isPassive = prefix.StartsWith( wxT( "R" ) ) || prefix.StartsWith( wxT( "L" ) ) || prefix.StartsWith( wxT( "C" ) ); // Migrate pins from array of indexes to name-value-pairs wxString pinMap; wxArrayString pinIndexes; wxStringSplit( legacyPins->GetText(), pinIndexes, ' ' ); if( isPassive && pinIndexes.size() == 2 && sourcePins.size() == 2 ) { if( pinIndexes[0] == wxT( "2" ) ) { pinMap.Printf( wxT( "%s=- %s=+" ), sourcePins[0]->GetNumber(), sourcePins[1]->GetNumber() ); } else { pinMap.Printf( wxT( "%s=+ %s=-" ), sourcePins[0]->GetNumber(), sourcePins[1]->GetNumber() ); } } else { for( unsigned ii = 0; ii < pinIndexes.size() && ii < sourcePins.size(); ++ii ) { if( ii > 0 ) pinMap.Append( wxS( " " ) ); pinMap.Append( wxString::Format( wxT( "%s=%s" ), sourcePins[ii]->GetNumber(), pinIndexes[ ii ] ) ); } } legacyPins->SetName( SIM_PINS_FIELD ); legacyPins->SetText( pinMap ); } if( T_field* legacyParams = aSymbol.FindField( wxT( "Sim_Params" ) ) ) { legacyParams->SetName( SIM_PARAMS_FIELD ); } return; } wxString device = deviceInfo.m_Text.Trim( true ).Trim( false ); wxString lib = libInfo.m_Text.Trim( true ).Trim( false ); wxString model = modelInfo.m_Text.Trim( true ).Trim( false ); wxString modelLineParams; bool libraryModel = false; bool inferredModel = false; bool internalModel = false; if( !lib.IsEmpty() ) { wxString msg; WX_STRING_REPORTER reporter( &msg ); SIM_LIB_MGR libMgr( aProject ); std::vector emptyFields; // Pull out any following parameters from model name model = model.BeforeFirst( ' ', &modelLineParams ); modelInfo.m_Text = model; SIM_LIBRARY::MODEL simModel = libMgr.CreateModel( lib, model.ToStdString(), emptyFields, sourcePins, reporter ); if( reporter.HasMessage() ) libraryModel = false; // Fall back to raw spice model else libraryModel = true; if( pinMapInfo.IsEmpty() ) { // Try to generate a default pin map from the SIM_MODEL's pins; if that fails, // generate one from the symbol's pins pinMapInfo.m_Text = wxString( simModel.model.Serializer().GeneratePins() ); if( pinMapInfo.IsEmpty() ) pinMapInfo.m_Text = generateDefaultPinMapFromSymbol( sourcePins ); } } else if( ( device == wxS( "R" ) || device == wxS( "L" ) || device == wxS( "C" ) || device == wxS( "V" ) || device == wxS( "I" ) ) && prefix.StartsWith( device ) && modelFromValueField ) { inferredModel = true; } else if( device == wxS( "V" ) || device == wxS( "I" ) ) { // See if we have a SPICE time-dependent function such as "sin(0 1 60)" or "sin 0 1 60" // that can be handled by a built-in SIM_MODEL_SOURCE. wxStringTokenizer tokenizer( model, wxT( "() " ), wxTOKEN_STRTOK ); if( tokenizer.HasMoreTokens() ) { deviceSubtypeInfo.m_Text = tokenizer.GetNextToken(); deviceSubtypeInfo.m_Text.MakeUpper(); for( SIM_MODEL::TYPE type : SIM_MODEL::TYPE_ITERATOR() ) { if( device == SIM_MODEL::SpiceInfo( type ).itemType && deviceSubtypeInfo.m_Text == SIM_MODEL::SpiceInfo( type ).functionName ) { try { std::unique_ptr simModel = SIM_MODEL::Create( type ); if( deviceSubtypeInfo.m_Text == wxT( "DC" ) && tokenizer.CountTokens() == 1 ) { wxCHECK( valueField, /* void */ ); valueField->SetText( tokenizer.GetNextToken() ); modelFromValueField = false; } else { for( int ii = 0; tokenizer.HasMoreTokens(); ++ii ) { simModel->SetParamValue( ii, tokenizer.GetNextToken().ToStdString(), SIM_VALUE_GRAMMAR::NOTATION::SPICE ); } deviceSubtypeInfo.m_Text = SIM_MODEL::TypeInfo( type ).fieldValue; spiceParamsInfo = modelInfo; spiceParamsInfo.m_Text = wxString( simModel->Serializer().GenerateParams() ); } internalModel = true; if( pinMapInfo.IsEmpty() ) { // Generate a default pin map from the SIM_MODEL's pins simModel->createPins( sourcePins ); pinMapInfo.m_Text = wxString( simModel->Serializer().GeneratePins() ); } } catch( ... ) { // Fall back to raw spice model } break; } } } } if( libraryModel ) { T_field libField = libInfo.CreateField( &aSymbol, SIM_LIBRARY_FIELD ); aSymbol.AddField( libField ); T_field nameField = modelInfo.CreateField( &aSymbol, SIM_NAME_FIELD ); aSymbol.AddField( nameField ); if( !modelLineParams.IsEmpty() ) { spiceParamsInfo = modelInfo; spiceParamsInfo.m_Pos.x += nameField.GetBoundingBox().GetWidth(); spiceParamsInfo.m_Text = modelLineParams; BOX2I nameBBox = nameField.GetBoundingBox(); int nameWidth = nameBBox.GetWidth(); // Add space between model name and additional parameters nameWidth += KiROUND( nameBBox.GetHeight() * 1.25 ); if( nameField.GetHorizJustify() == GR_TEXT_H_ALIGN_RIGHT ) spiceParamsInfo.m_Pos.x -= nameWidth; else spiceParamsInfo.m_Pos.x += nameWidth; T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD ); aSymbol.AddField( paramsField ); } if( modelFromValueField ) valueField->SetText( wxT( "${SIM.NAME}" ) ); } else if( inferredModel ) { // DeviceType is left in the reference designator and Model is left in the value field, // so there's nothing to do here.... } else if( internalModel ) { T_field deviceField = deviceInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD ); aSymbol.AddField( deviceField ); if( !deviceSubtypeInfo.m_Text.IsEmpty() ) { T_field subtypeField = deviceSubtypeInfo.CreateField( &aSymbol, SIM_DEVICE_SUBTYPE_FIELD ); aSymbol.AddField( subtypeField ); } if( !spiceParamsInfo.IsEmpty() ) { T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD ); aSymbol.AddField( paramsField ); } if( modelFromValueField ) valueField->SetText( wxT( "${SIM.PARAMS}" ) ); } else // Insert a raw spice model as a substitute. { if( device.IsEmpty() && lib.IsEmpty() ) { spiceParamsInfo = modelInfo; } else { spiceParamsInfo.m_Text.Printf( wxT( "type=\"%s\" model=\"%s\" lib=\"%s\"" ), device, model, lib ); } deviceInfo.m_Text = SIM_MODEL::DeviceInfo( SIM_MODEL::DEVICE_T::SPICE ).fieldValue; T_field deviceField = deviceInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD ); aSymbol.AddField( deviceField ); T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD ); aSymbol.AddField( paramsField ); if( modelFromValueField ) { // Get the current Value field, after previous changes. valueField = aSymbol.FindField( wxT( "Value" ) ); if( valueField ) valueField->SetText( wxT( "${SIM.PARAMS}" ) ); } // We know nothing about the SPICE model here, so we've got no choice but to generate // the default pin map from the symbol's pins. if( pinMapInfo.IsEmpty() ) pinMapInfo.m_Text = generateDefaultPinMapFromSymbol( sourcePins ); } if( !pinMapInfo.IsEmpty() ) { T_field pinsField = pinMapInfo.CreateField( &aSymbol, SIM_PINS_FIELD ); aSymbol.AddField( pinsField ); } } template void SIM_MODEL::MigrateSimModel( SCH_SYMBOL& aSymbol, const PROJECT* aProject ); template void SIM_MODEL::MigrateSimModel( LIB_SYMBOL& aSymbol, const PROJECT* aProject );