/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef __PNS_OPTIMIZER_H #define __PNS_OPTIMIZER_H #include #include #include #include #include "range.h" namespace PNS { class NODE; class ROUTER; class LINE; class DIFF_PAIR; class ITEM; class JOINT; /** * COST_ESTIMATOR * * Calculates the cost of a given line, taking corner angles and total length into account. **/ class COST_ESTIMATOR { public: COST_ESTIMATOR() : m_lengthCost( 0 ), m_cornerCost( 0 ) {} COST_ESTIMATOR( const COST_ESTIMATOR& aB ) : m_lengthCost( aB.m_lengthCost ), m_cornerCost( aB.m_cornerCost ) {} ~COST_ESTIMATOR() {}; static int CornerCost( const SEG& aA, const SEG& aB ); static int CornerCost( const SHAPE_LINE_CHAIN& aLine ); static int CornerCost( const LINE& aLine ); void Add( const LINE& aLine ); void Remove( const LINE& aLine ); void Replace( const LINE& aOldLine, const LINE& aNewLine ); bool IsBetter( const COST_ESTIMATOR& aOther, double aLengthTolerance, double aCornerTollerace ) const; double GetLengthCost() const { return m_lengthCost; } double GetCornerCost() const { return m_cornerCost; } private: double m_lengthCost; int m_cornerCost; }; class OPT_CONSTRAINT; /** * OPTIMIZER * * Performs various optimizations of the lines being routed, attempting to make the lines shorter * and less cornery. There are 3 kinds of optimizations so far: * - Merging obtuse segments (MERGE_OBTUSE): tries to join together as many * obtuse segments as possible without causing collisions * - Rerouting path between pair of line corners with a 2-segment "\__" line and iteratively repeating * the procedure as long as the total cost of the line keeps decreasing * - "Smart Pads" - that is, rerouting pad/via exits to make them look nice (SMART_PADS). **/ class OPTIMIZER { public: enum OptimizationEffort { MERGE_SEGMENTS = 0x01, SMART_PADS = 0x02, MERGE_OBTUSE = 0x04, FANOUT_CLEANUP = 0x08, KEEP_TOPOLOGY = 0x10, PRESERVE_VERTEX = 0x20, RESTRICT_VERTEX_RANGE = 0x40 }; OPTIMIZER( NODE* aWorld ); ~OPTIMIZER(); ///> a quick shortcut to optmize a line without creating and setting up an optimizer static bool Optimize( LINE* aLine, int aEffortLevel, NODE* aWorld, const VECTOR2I aV = VECTOR2I(0, 0) ); bool Optimize( LINE* aLine, LINE* aResult = NULL ); bool Optimize( DIFF_PAIR* aPair ); void SetWorld( NODE* aNode ) { m_world = aNode; } void CacheStaticItem( ITEM* aItem ); void CacheRemove( ITEM* aItem ); void ClearCache( bool aStaticOnly = false ); void SetCollisionMask( int aMask ) { m_collisionKindMask = aMask; } void SetEffortLevel( int aEffort ) { m_effortLevel = aEffort; } void SetPreserveVertex( const VECTOR2I& aV ) { m_preservedVertex = aV; m_effortLevel |= OPTIMIZER::PRESERVE_VERTEX; } void SetRestrictVertexRange( int aStart, int aEnd ) { m_restrictedVertexRange.first = aStart; m_restrictedVertexRange.second = aEnd; m_effortLevel |= OPTIMIZER::RESTRICT_VERTEX_RANGE; } void SetRestrictArea( const BOX2I& aArea ) { m_restrictArea = aArea; } void ClearConstraints(); void AddConstraint ( OPT_CONSTRAINT *aConstraint ); bool extractPadGrids( std::vector& aPadJoints ); void BuildPadGrids(); private: static const int MaxCachedItems = 256; typedef std::vector BREAKOUT_LIST; struct CACHE_VISITOR; struct CACHED_ITEM { int m_hits; bool m_isStatic; }; bool mergeObtuse( LINE* aLine ); bool mergeFull( LINE* aLine ); bool removeUglyCorners( LINE* aLine ); bool runSmartPads( LINE* aLine ); bool mergeStep( LINE* aLine, SHAPE_LINE_CHAIN& aCurrentLine, int step ); bool fanoutCleanup( LINE * aLine ); bool mergeDpSegments( DIFF_PAIR *aPair ); bool mergeDpStep( DIFF_PAIR *aPair, bool aTryP, int step ); bool checkColliding( ITEM* aItem, bool aUpdateCache = true ); bool checkColliding( LINE* aLine, const SHAPE_LINE_CHAIN& aOptPath ); void cacheAdd( ITEM* aItem, bool aIsStatic ); void removeCachedSegments( LINE* aLine, int aStartVertex = 0, int aEndVertex = -1 ); bool checkConstraints( int aVertex1, int aVertex2, LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ); BREAKOUT_LIST circleBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const; BREAKOUT_LIST rectBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const; BREAKOUT_LIST ovalBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const; BREAKOUT_LIST customBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const; BREAKOUT_LIST computeBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const; int smartPadsSingle( LINE* aLine, ITEM* aPad, bool aEnd, int aEndVertex ); ITEM* findPadOrVia( int aLayer, int aNet, const VECTOR2I& aP ) const; SHAPE_INDEX_LIST m_cache; std::vector m_constraints; typedef std::unordered_map CachedItemTags; CachedItemTags m_cacheTags; NODE* m_world; int m_collisionKindMask; int m_effortLevel; bool m_keepPostures; VECTOR2I m_preservedVertex; std::pair m_restrictedVertexRange; BOX2I m_restrictArea; }; class OPT_CONSTRAINT { public: OPT_CONSTRAINT( NODE* aWorld ) : m_world( aWorld ) { m_priority = 0; }; virtual ~OPT_CONSTRAINT() {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) = 0; int GetPriority() const { return m_priority; } void SetPriority( int aPriority ) { m_priority = aPriority; } protected: NODE* m_world; int m_priority; }; class ANGLE_CONSTRAINT_45: public OPT_CONSTRAINT { public: ANGLE_CONSTRAINT_45( NODE* aWorld, int aEntryDirectionMask = -1, int aExitDirectionMask = -1 ) : OPT_CONSTRAINT( aWorld ), m_entryDirectionMask( aEntryDirectionMask ), m_exitDirectionMask( aExitDirectionMask ) { } virtual ~ANGLE_CONSTRAINT_45() {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override; private: int m_entryDirectionMask; int m_exitDirectionMask; }; class AREA_CONSTRAINT : public OPT_CONSTRAINT { public: AREA_CONSTRAINT( NODE* aWorld, const BOX2I& aAllowedArea ) : OPT_CONSTRAINT( aWorld ), m_allowedArea ( aAllowedArea ) {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override; private: BOX2I m_allowedArea; }; class KEEP_TOPOLOGY_CONSTRAINT: public OPT_CONSTRAINT { public: KEEP_TOPOLOGY_CONSTRAINT( NODE* aWorld ) : OPT_CONSTRAINT( aWorld ) {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override; }; class PRESERVE_VERTEX_CONSTRAINT: public OPT_CONSTRAINT { public: PRESERVE_VERTEX_CONSTRAINT( NODE* aWorld, const VECTOR2I& aV ) : OPT_CONSTRAINT( aWorld ), m_v( aV ) {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override; private: VECTOR2I m_v; }; class RESTRICT_VERTEX_RANGE_CONSTRAINT: public OPT_CONSTRAINT { public: RESTRICT_VERTEX_RANGE_CONSTRAINT( NODE* aWorld, int aStart, int aEnd ) : OPT_CONSTRAINT( aWorld ), m_start( aStart ), m_end( aEnd ) {}; virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override; private: int m_start; int m_end; }; }; #endif // __PNS_OPTIMIZER_H