/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include "pns_walkaround.h" #include "pns_optimizer.h" #include "pns_utils.h" #include "pns_router.h" #include "pns_debug_decorator.h" namespace PNS { void WALKAROUND::start( const LINE& aInitialPath ) { m_iteration = 0; m_iterationLimit = 50; } NODE::OPT_OBSTACLE WALKAROUND::nearestObstacle( const LINE& aPath ) { NODE::OPT_OBSTACLE obs = m_world->NearestObstacle( &aPath, m_itemMask, m_restrictedSet.empty() ? NULL : &m_restrictedSet ); if( m_restrictedSet.empty() ) return obs; else if( obs && m_restrictedSet.find ( obs->m_item ) != m_restrictedSet.end() ) return obs; return NODE::OPT_OBSTACLE(); } WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath, bool aWindingDirection ) { OPT& current_obs = aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1]; if( !current_obs ) return DONE; SHAPE_LINE_CHAIN path_pre[2], path_walk[2], path_post[2]; if( aPath.PointCount() > 1 ) { VECTOR2I last = aPath.CPoint( -1 ); if( ( current_obs->m_hull ).PointInside( last ) || ( current_obs->m_hull ).PointOnEdge( last ) ) { m_recursiveBlockageCount++; if( m_recursiveBlockageCount < 3 ) aPath.Line().Append( current_obs->m_hull.NearestPoint( last ) ); else { aPath = aPath.ClipToNearestObstacle( m_world ); return DONE; } } } aPath.Walkaround( current_obs->m_hull, path_pre[0], path_walk[0], path_post[0], aWindingDirection ); aPath.Walkaround( current_obs->m_hull, path_pre[1], path_walk[1], path_post[1], !aWindingDirection ); if( !aPath.Walkaround( current_obs->m_hull, path_pre[1], path_walk[1], path_post[1], !aWindingDirection ) ) return STUCK; auto l =aPath.CLine(); #if 0 if( m_logger ) { m_logger->NewGroup( aWindingDirection ? "walk-cw" : "walk-ccw", m_iteration ); m_logger->Log( &path_walk[0], 0, "path_walk" ); m_logger->Log( &path_pre[0], 1, "path_pre" ); m_logger->Log( &path_post[0], 4, "path_post" ); m_logger->Log( ¤t_obs->m_hull, 2, "hull" ); m_logger->Log( current_obs->m_item, 3, "item" ); } #endif if ( Dbg() ) { char name[128]; snprintf(name, sizeof(name), "hull-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration ); Dbg()->AddLine( current_obs->m_hull, 0, 1, name); snprintf(name, sizeof(name), "path-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration ); Dbg()->AddLine( aPath.CLine(), 1, 1, name ); } int len_pre = path_walk[0].Length(); int len_alt = path_walk[1].Length(); LINE walk_path( aPath, path_walk[1] ); bool alt_collides = static_cast( m_world->CheckColliding( &walk_path, m_itemMask ) ); SHAPE_LINE_CHAIN pnew; /*if( !m_forceLongerPath && len_alt < len_pre && !alt_collides && !prev_recursive ) { pnew = path_pre[1]; pnew.Append( path_walk[1] ); pnew.Append( path_post[1] ); if( !path_post[1].PointCount() || !path_walk[1].PointCount() ) current_obs = nearestObstacle( LINE( aPath, path_pre[1] ) ); else current_obs = nearestObstacle( LINE( aPath, path_post[1] ) ); } else*/ { pnew = path_pre[0]; pnew.Append( path_walk[0] ); pnew.Append( path_post[0] ); if( path_post[0].PointCount() == 0 || path_walk[0].PointCount() == 0 ) current_obs = nearestObstacle( LINE( aPath, path_pre[0] ) ); else current_obs = nearestObstacle( LINE( aPath, path_walk[0] ) ); if( !current_obs ) { current_obs = nearestObstacle( LINE( aPath, path_post[0] ) ); } } pnew.Simplify(); aPath.SetShape( pnew ); return IN_PROGRESS; } bool clipToLoopStart( SHAPE_LINE_CHAIN& l ) { auto ip = l.SelfIntersecting(); if(!ip) return false; else { int pidx = l.Split( ip->p ); auto lead = l.Slice(0, pidx); auto tail = l.Slice(pidx + 1, -1); int pidx2 = tail.Split( ip->p ); auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator(); dbg->AddPoint( ip->p, 5 ); l = lead; l.Append( tail.Slice( 0, pidx2 ) ); //l = l.Slice(0, pidx); return true; } } const WALKAROUND::RESULT WALKAROUND::Route( const LINE& aInitialPath ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; RESULT result; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return RESULT( STUCK, STUCK ); return RESULT( DONE, DONE, aInitialPath, aInitialPath ); } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; result.lineCw = aInitialPath; result.lineCcw = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); auto old = path_cw.CLine(); if( clipToLoopStart( path_cw.Line() ) ) s_cw = ALMOST_DONE; if( clipToLoopStart( path_ccw.Line() ) ) s_ccw = ALMOST_DONE; if( s_cw != IN_PROGRESS ) { result.lineCw = path_cw; result.statusCw = s_cw; } if( s_ccw != IN_PROGRESS ) { result.lineCcw = path_ccw; result.statusCcw = s_ccw; } if( s_cw != IN_PROGRESS && s_ccw != IN_PROGRESS ) break; m_iteration++; } if( s_cw == IN_PROGRESS ) { result.lineCw = path_cw; result.statusCw = ALMOST_DONE; } if( s_ccw == IN_PROGRESS ) { result.lineCcw = path_ccw; result.statusCcw = ALMOST_DONE; } result.lineCw.Line().Simplify(); result.lineCcw.Line().Simplify(); if( result.lineCw.SegmentCount() < 1 || result.lineCw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) { result.statusCw = STUCK; } if( result.lineCw.PointCount() > 0 && result.lineCw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) { result.statusCw = ALMOST_DONE; } if( result.lineCcw.SegmentCount() < 1 || result.lineCcw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) { result.statusCcw = STUCK; } if( result.lineCcw.PointCount() > 0 && result.lineCcw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) { result.statusCcw = ALMOST_DONE; } return result; } WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath, bool aOptimize ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return STUCK; aWalkPath = aInitialPath; return DONE; } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iterationLimit ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.Line().Simplify(); if( aWalkPath.SegmentCount() < 1 ) return STUCK; if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) return ALMOST_DONE; if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) return STUCK; WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( st == DONE ) { if( aOptimize ) OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world ); } return st; } }