/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include // layer names for Gencad export static std::string GenCADLayerName( int aCuCount, PCB_LAYER_ID aId ) { if( IsCopperLayer( aId ) ) { if( aId == F_Cu ) return "TOP"; else if( aId == B_Cu ) return "BOTTOM"; else if( aId <= 14 ) return StrPrintf( "INNER%d", aCuCount - aId - 1 ); else return StrPrintf( "LAYER%d", aId ); } else { const char* txt; // using a switch to clearly show mapping & catch out of bounds index. switch( aId ) { // Technicals case B_Adhes: txt = "B.Adhes"; break; case F_Adhes: txt = "F.Adhes"; break; case B_Paste: txt = "SOLDERPASTE_BOTTOM"; break; case F_Paste: txt = "SOLDERPASTE_TOP"; break; case B_SilkS: txt = "SILKSCREEN_BOTTOM"; break; case F_SilkS: txt = "SILKSCREEN_TOP"; break; case B_Mask: txt = "SOLDERMASK_BOTTOM"; break; case F_Mask: txt = "SOLDERMASK_TOP"; break; // Users case Dwgs_User: txt = "Dwgs.User"; break; case Cmts_User: txt = "Cmts.User"; break; case Eco1_User: txt = "Eco1.User"; break; case Eco2_User: txt = "Eco2.User"; break; case Edge_Cuts: txt = "Edge.Cuts"; break; case Margin: txt = "Margin"; break; // Footprint case F_CrtYd: txt = "F_CrtYd"; break; case B_CrtYd: txt = "B_CrtYd"; break; case F_Fab: txt = "F_Fab"; break; case B_Fab: txt = "B_Fab"; break; default: wxASSERT_MSG( 0, wxT( "aId UNEXPECTED" ) ); txt = "BAD-INDEX!"; break; } return txt; } } static const PCB_LAYER_ID gc_seq[] = { B_Cu, In30_Cu, In29_Cu, In28_Cu, In27_Cu, In26_Cu, In25_Cu, In24_Cu, In23_Cu, In22_Cu, In21_Cu, In20_Cu, In19_Cu, In18_Cu, In17_Cu, In16_Cu, In15_Cu, In14_Cu, In13_Cu, In12_Cu, In11_Cu, In10_Cu, In9_Cu, In8_Cu, In7_Cu, In6_Cu, In5_Cu, In4_Cu, In3_Cu, In2_Cu, In1_Cu, F_Cu, }; // flipped layer name for Gencad export (to make CAM350 imports correct) static std::string GenCADLayerNameFlipped( int aCuCount, PCB_LAYER_ID aId ) { if( 1<= aId && aId <= 14 ) return StrPrintf( "INNER%d", 14 - aId ); return GenCADLayerName( aCuCount, aId ); } static wxString escapeString( const wxString& aString ) { wxString copy( aString ); copy.Replace( wxT( "\"" ), wxT( "\\\"" ) ); return copy; } static std::string fmt_mask( LSET aSet ) { return StrPrintf( "%08x", (unsigned) ( aSet & LSET::AllCuMask() ).to_ulong() ); } // Association between shape names (using shapeName index) and components static std::map componentShapes; static std::map shapeNames; const wxString GENCAD_EXPORTER::getShapeName( FOOTPRINT* aFootprint ) { static const wxString invalid( "invalid" ); if( m_useIndividualShapes ) return aFootprint->GetReference(); auto itShape = componentShapes.find( aFootprint ); wxCHECK( itShape != componentShapes.end(), invalid ); auto itName = shapeNames.find( itShape->second ); wxCHECK( itName != shapeNames.end(), invalid ); return itName->second; } // GerbTool chokes on units different than INCH so this is the conversion factor const static double SCALE_FACTOR = 1000.0 * pcbIUScale.IU_PER_MILS; /* Two helper functions to calculate coordinates of footprints in gencad values * (GenCAD Y axis from bottom to top) */ double GENCAD_EXPORTER::MapXTo( int aX ) { return (aX - GencadOffset.x) / SCALE_FACTOR; } double GENCAD_EXPORTER::MapYTo( int aY ) { return (GencadOffset.y - aY) / SCALE_FACTOR; } bool GENCAD_EXPORTER::WriteFile( wxString& aFullFileName ) { componentShapes.clear(); shapeNames.clear(); m_file = wxFopen( aFullFileName, wxT( "wt" ) ); if( !m_file ) return false; // Switch the locale to standard C (needed to print floating point numbers) LOCALE_IO toggle; BOARD* pcb = m_board; // Update some board data, to ensure a reliable gencad export pcb->ComputeBoundingBox( false, false ); /* Temporary modification of footprints that are flipped (i.e. on bottom * layer) to convert them to non flipped footprints. * This is necessary to easily export shapes to GenCAD, * that are given as normal orientation (non flipped, rotation = 0)) * these changes will be undone later */ for( FOOTPRINT* footprint : pcb->Footprints() ) { footprint->SetFlag( 0 ); if( footprint->GetLayer() == B_Cu ) { footprint->Flip( footprint->GetPosition(), false ); footprint->SetFlag( 1 ); } } /* Gencad has some mandatory and some optional sections: some importer * need the padstack section (which is optional) anyway. Also the * order of the section *is* important */ CreateHeaderInfoData(); // Gencad header CreateBoardSection(); // Board perimeter CreatePadsShapesSection(); // Pads and padstacks CreateArtworksSection(); // Empty but mandatory /* Gencad splits a component info in shape, component and device. * We don't do any sharing (it would be difficult since each module is * customizable after placement) */ CreateShapesSection(); CreateComponentsSection(); CreateDevicesSection(); // In a similar way the netlist is split in net, track and route CreateSignalsSection(); CreateTracksInfoData(); CreateRoutesSection(); fclose( m_file ); // Undo the footprints modifications (flipped footprints) for( FOOTPRINT* footprint : pcb->Footprints() ) { if( footprint->GetFlag() ) { footprint->Flip( footprint->GetPosition(), false ); footprint->SetFlag( 0 ); } } componentShapes.clear(); shapeNames.clear(); return true; } // Sort vias for uniqueness static bool ViaSort( const PCB_VIA* aPadref, const PCB_VIA* aPadcmp ) { if( aPadref->GetWidth() != aPadcmp->GetWidth() ) return aPadref->GetWidth() < aPadcmp->GetWidth(); if( aPadref->GetDrillValue() != aPadcmp->GetDrillValue() ) return aPadref->GetDrillValue() < aPadcmp->GetDrillValue(); if( aPadref->GetLayerSet() != aPadcmp->GetLayerSet() ) return aPadref->GetLayerSet().FmtBin().compare( aPadcmp->GetLayerSet().FmtBin() ) < 0; return false; } void GENCAD_EXPORTER::CreateArtworksSection( ) { // The ARTWORKS section is empty but (officially) mandatory fputs( "$ARTWORKS\n", m_file ); fputs( "$ENDARTWORKS\n\n", m_file ); } void GENCAD_EXPORTER::CreatePadsShapesSection() { // Emit PADS and PADSTACKS. They are sorted and emitted uniquely. // Via name is synthesized from their attributes, pads are numbered std::vector padstacks; std::vector vias; std::vector viastacks; padstacks.resize( 1 ); // We count pads from 1 // The master layermask (i.e. the enabled layers) for padstack generation LSET master_layermask = m_board->GetDesignSettings().GetEnabledLayers(); int cu_count = m_board->GetCopperLayerCount(); fputs( "$PADS\n", m_file ); // Enumerate and sort the pads std::vector pads = m_board->GetPads(); std::sort( pads.begin(), pads.end(), []( const PAD* a, const PAD* b ) { return PAD::Compare( a, b ) < 0; } ); // The same for vias for( PCB_TRACK* track : m_board->Tracks() ) { if( PCB_VIA* via = dyn_cast( track ) ) vias.push_back( via ); } std::sort( vias.begin(), vias.end(), ViaSort ); vias.erase( std::unique( vias.begin(), vias.end(), []( const PCB_VIA* a, const PCB_VIA* b ) { return ViaSort( a, b ) == false; } ), vias.end() ); // Emit vias pads for( PCB_VIA* via : vias ) { viastacks.push_back( via ); fprintf( m_file, "PAD V%d.%d.%s ROUND %g\nCIRCLE 0 0 %g\n", via->GetWidth(), via->GetDrillValue(), fmt_mask( via->GetLayerSet() & master_layermask ).c_str(), via->GetDrillValue() / SCALE_FACTOR, via->GetWidth() / (SCALE_FACTOR * 2) ); } // Emit component pads PAD* old_pad = nullptr; int pad_name_number = 0; for( unsigned i = 0; iGetOffset(); pad->SetSubRatsnest( pad_name_number ); // @warning: This code is not 100% correct. The #PAD::Compare function does not test // custom pad primitives so there may be duplicate custom pads in the export. if( old_pad && 0 == PAD::Compare( old_pad, pad ) ) continue; old_pad = pad; pad_name_number++; pad->SetSubRatsnest( pad_name_number ); fprintf( m_file, "PAD P%d", pad->GetSubRatsnest() ); padstacks.push_back( pad ); // Will have its own padstack later int dx = pad->GetSize().x / 2; int dy = pad->GetSize().y / 2; switch( pad->GetShape() ) { default: UNIMPLEMENTED_FOR( pad->ShowPadShape() ); KI_FALLTHROUGH; case PAD_SHAPE::CIRCLE: fprintf( m_file, " ROUND %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); /* Circle is center, radius */ fprintf( m_file, "CIRCLE %g %g %g\n", off.x / SCALE_FACTOR, -off.y / SCALE_FACTOR, pad->GetSize().x / (SCALE_FACTOR * 2) ); break; case PAD_SHAPE::RECTANGLE: fprintf( m_file, " RECTANGULAR %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); // Rectangle is begin, size *not* begin, end! fprintf( m_file, "RECTANGLE %g %g %g %g\n", (-dx + off.x ) / SCALE_FACTOR, (-dy - off.y ) / SCALE_FACTOR, dx / (SCALE_FACTOR / 2), dy / (SCALE_FACTOR / 2) ); break; case PAD_SHAPE::ROUNDRECT: case PAD_SHAPE::OVAL: { const VECTOR2I& size = pad->GetSize(); int radius = std::min( size.x, size.y ) / 2; if( pad->GetShape() == PAD_SHAPE::ROUNDRECT ) { radius = pad->GetRoundRectCornerRadius(); } int lineX = size.x / 2 - radius; int lineY = size.y / 2 - radius; fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); // bottom left arc fprintf( m_file, "ARC %g %g %g %g %g %g\n", ( off.x - lineX - radius ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR, ( off.x - lineX ) / SCALE_FACTOR, ( -off.y - lineY - radius ) / SCALE_FACTOR, ( off.x - lineX ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR ); // bottom line if( lineX > 0 ) { fprintf( m_file, "LINE %g %g %g %g\n", ( off.x - lineX ) / SCALE_FACTOR, ( -off.y - lineY - radius ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR, ( -off.y - lineY - radius ) / SCALE_FACTOR ); } // bottom right arc fprintf( m_file, "ARC %g %g %g %g %g %g\n", ( off.x + lineX ) / SCALE_FACTOR, ( -off.y - lineY - radius ) / SCALE_FACTOR, ( off.x + lineX + radius ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR ); // right line if( lineY > 0 ) { fprintf( m_file, "LINE %g %g %g %g\n", ( off.x + lineX + radius ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR, ( off.x + lineX + radius ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR ); } // top right arc fprintf( m_file, "ARC %g %g %g %g %g %g\n", ( off.x + lineX + radius ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR, ( -off.y + lineY + radius ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR ); // top line if( lineX > 0 ) { fprintf( m_file, "LINE %g %g %g %g\n" , ( off.x - lineX ) / SCALE_FACTOR, ( -off.y + lineY + radius ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR, ( -off.y + lineY + radius ) / SCALE_FACTOR ); } // top left arc fprintf( m_file, "ARC %g %g %g %g %g %g\n", ( off.x - lineX ) / SCALE_FACTOR, ( -off.y + lineY + radius ) / SCALE_FACTOR, ( off.x - lineX - radius ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR, ( off.x - lineX ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR ); // left line if( lineY > 0 ) { fprintf( m_file, "LINE %g %g %g %g\n", ( off.x - lineX - radius ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR, ( off.x - lineX - radius ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR ); } break; } case PAD_SHAPE::TRAPEZOID: { fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); int ddx = pad->GetDelta().x / 2; int ddy = pad->GetDelta().y / 2; VECTOR2I poly[4]; poly[0] = VECTOR2I( -dx + ddy, dy + ddx ); poly[1] = VECTOR2I( dx - ddy, dy - ddx ); poly[2] = VECTOR2I( dx + ddy, -dy + ddx ); poly[3] = VECTOR2I( -dx - ddy, -dy - ddx ); for( int cur = 0; cur < 4; ++cur ) { int next = ( cur + 1 ) % 4; fprintf( m_file, "LINE %g %g %g %g\n", ( off.x + poly[cur].x ) / SCALE_FACTOR, ( -off.y - poly[cur].y ) / SCALE_FACTOR, ( off.x + poly[next].x ) / SCALE_FACTOR, ( -off.y - poly[next].y ) / SCALE_FACTOR ); } break; } case PAD_SHAPE::CHAMFERED_RECT: { fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); SHAPE_POLY_SET outline; int maxError = m_board->GetDesignSettings().m_MaxError; VECTOR2I padOffset( 0, 0 ); TransformRoundChamferedRectToPolygon( outline, padOffset, pad->GetSize(), pad->GetOrientation(), pad->GetRoundRectCornerRadius(), pad->GetChamferRectRatio(), pad->GetChamferPositions(), 0, maxError, ERROR_INSIDE ); for( int jj = 0; jj < outline.OutlineCount(); ++jj ) { const SHAPE_LINE_CHAIN& poly = outline.COutline( jj ); int pointCount = poly.PointCount(); for( int ii = 0; ii < pointCount; ii++ ) { int next = ( ii + 1 ) % pointCount; fprintf( m_file, "LINE %g %g %g %g\n", poly.CPoint( ii ).x / SCALE_FACTOR, -poly.CPoint( ii ).y / SCALE_FACTOR, poly.CPoint( next ).x / SCALE_FACTOR, -poly.CPoint( next ).y / SCALE_FACTOR ); } } break; } case PAD_SHAPE::CUSTOM: { fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR ); SHAPE_POLY_SET outline; pad->MergePrimitivesAsPolygon( &outline ); for( int jj = 0; jj < outline.OutlineCount(); ++jj ) { const SHAPE_LINE_CHAIN& poly = outline.COutline( jj ); int pointCount = poly.PointCount(); for( int ii = 0; ii < pointCount; ii++ ) { int next = ( ii + 1 ) % pointCount; fprintf( m_file, "LINE %g %g %g %g\n", ( off.x + poly.CPoint( ii ).x ) / SCALE_FACTOR, ( -off.y - poly.CPoint( ii ).y ) / SCALE_FACTOR, ( off.x + poly.CPoint( next ).x ) / SCALE_FACTOR, ( -off.y - poly.CPoint( next ).y ) / SCALE_FACTOR ); } } break; } } } fputs( "\n$ENDPADS\n\n", m_file ); // Now emit the padstacks definitions, using the combined layer masks fputs( "$PADSTACKS\n", m_file ); // Via padstacks for( unsigned i = 0; i < viastacks.size(); i++ ) { PCB_VIA* via = viastacks[i]; LSET mask = via->GetLayerSet() & master_layermask; fprintf( m_file, "PADSTACK VIA%d.%d.%s %g\n", via->GetWidth(), via->GetDrillValue(), fmt_mask( mask ).c_str(), via->GetDrillValue() / SCALE_FACTOR ); for( LSEQ seq = mask.Seq( gc_seq, arrayDim( gc_seq ) ); seq; ++seq ) { PCB_LAYER_ID layer = *seq; fprintf( m_file, "PAD V%d.%d.%s %s 0 0\n", via->GetWidth(), via->GetDrillValue(), fmt_mask( mask ).c_str(), GenCADLayerName( cu_count, layer ).c_str() ); } } /* Component padstacks * Older versions of CAM350 don't apply correctly the FLIP semantics for * padstacks, i.e. doesn't swap the top and bottom layers... so I need to * define the shape as MIRRORX and define a separate 'flipped' padstack... * until it appears yet another non-compliant importer */ for( unsigned i = 1; i < padstacks.size(); i++ ) { PAD* pad = padstacks[i]; // Straight padstack fprintf( m_file, "PADSTACK PAD%u %g\n", i, pad->GetDrillSize().x / SCALE_FACTOR ); LSET pad_set = pad->GetLayerSet() & master_layermask; // the special gc_seq for( LSEQ seq = pad_set.Seq( gc_seq, arrayDim( gc_seq ) ); seq; ++seq ) { PCB_LAYER_ID layer = *seq; fprintf( m_file, "PAD P%u %s 0 0\n", i, GenCADLayerName( cu_count, layer ).c_str() ); } // Flipped padstack if( m_flipBottomPads ) { fprintf( m_file, "PADSTACK PAD%uF %g\n", i, pad->GetDrillSize().x / SCALE_FACTOR ); // the normal PCB_LAYER_ID sequence is inverted from gc_seq[] for( LSEQ seq = pad_set.Seq(); seq; ++seq ) { PCB_LAYER_ID layer = *seq; fprintf( m_file, "PAD P%u %s 0 0\n", i, GenCADLayerNameFlipped( cu_count, layer ).c_str() ); } } } fputs( "$ENDPADSTACKS\n\n", m_file ); } /// Compute hashes for footprints without taking into account their position, rotation or layer static size_t hashFootprint( const FOOTPRINT* aFootprint ) { size_t ret = 0x11223344; constexpr int flags = HASH_FLAGS::HASH_POS | HASH_FLAGS::REL_COORD | HASH_FLAGS::HASH_ROT | HASH_FLAGS::HASH_LAYER; for( PCB_FIELD* i : aFootprint->Fields() ) ret += hash_fp_item( i, flags ); for( BOARD_ITEM* i : aFootprint->GraphicalItems() ) ret += hash_fp_item( i, flags ); for( PAD* i : aFootprint->Pads() ) ret += hash_fp_item( i, flags ); return ret; } /* Creates the footprint shape list. * Since module shape is customizable after the placement we cannot share them; * instead we opt for the one-module-one-shape-one-component-one-device approach */ void GENCAD_EXPORTER::CreateShapesSection() { const char* layer; wxString pinname; const char* mirror = "0"; std::map shapes; fputs( "$SHAPES\n", m_file ); for( FOOTPRINT* footprint : m_board->Footprints() ) { if( !m_useIndividualShapes ) { // Check if such shape has been already generated, and if so - reuse it // It is necessary to compute hash (i.e. check all children objects) as // certain components instances might have been modified on the board. // In such case the shape will be different despite the same LIB_ID. wxString shapeName = footprint->GetFPID().Format(); auto shapeIt = shapes.find( shapeName ); size_t modHash = hashFootprint( footprint ); if( shapeIt != shapes.end() ) { if( modHash != shapeIt->second ) { // there is an entry for this footprint, but it has a modified shape, // so we need to create a new entry wxString newShapeName; int suffix = 0; // find an unused name or matching entry do { newShapeName = wxString::Format( wxT( "%s_%d" ), shapeName, suffix ); shapeIt = shapes.find( newShapeName ); ++suffix; } while( shapeIt != shapes.end() && shapeIt->second != modHash ); shapeName = newShapeName; } if( shapeIt != shapes.end() && modHash == shapeIt->second ) { // shape found, so reuse it componentShapes[footprint] = modHash; continue; } } // new shape componentShapes[footprint] = modHash; shapeNames[modHash] = shapeName; shapes[shapeName] = modHash; FootprintWriteShape( footprint, shapeName ); } else // individual shape for each component { FootprintWriteShape( footprint, footprint->GetReference() ); } // set of already emitted pins to check for duplicates std::set pins; for( PAD* pad : footprint->Pads() ) { /* Padstacks are defined using the correct layers for the pads, therefore to * all pads need to be marked as TOP to use the padstack information correctly. */ layer = "TOP"; pinname = pad->GetNumber(); if( pinname.IsEmpty() ) pinname = wxT( "none" ); if( m_useUniquePins ) { int suffix = 0; wxString origPinname( pinname ); auto it = pins.find( pinname ); while( it != pins.end() ) { pinname = wxString::Format( wxT( "%s_%d" ), origPinname, suffix ); ++suffix; it = pins.find( pinname ); } pins.insert( pinname ); } EDA_ANGLE orient = pad->GetOrientation() - footprint->GetOrientation(); orient.Normalize(); VECTOR2I padPos = pad->GetFPRelativePosition(); // Bottom side footprints use the flipped padstack fprintf( m_file, ( m_flipBottomPads && footprint->GetFlag() ) ? "PIN \"%s\" PAD%dF %g %g %s %g %s\n" : "PIN \"%s\" PAD%d %g %g %s %g %s\n", TO_UTF8( escapeString( pinname ) ), pad->GetSubRatsnest(), padPos.x / SCALE_FACTOR, -padPos.y / SCALE_FACTOR, layer, orient.AsDegrees(), mirror ); } } fputs( "$ENDSHAPES\n\n", m_file ); } /* Creates the section $COMPONENTS (Footprints placement) * Bottom side components are difficult to handle: shapes must be mirrored or * flipped, silk layers need to be handled correctly and so on. Also it seems * that *no one* follows the specs... */ void GENCAD_EXPORTER::CreateComponentsSection() { fputs( "$COMPONENTS\n", m_file ); int cu_count = m_board->GetCopperLayerCount(); for( FOOTPRINT* footprint : m_board->Footprints() ) { const char* mirror; const char* flip; EDA_ANGLE fp_orient = footprint->GetOrientation(); if( footprint->GetFlag() ) { mirror = "MIRRORX"; flip = "FLIP"; fp_orient = fp_orient.Invert().Normalize(); } else { mirror = "0"; flip = "0"; } fprintf( m_file, "\nCOMPONENT \"%s\"\n", TO_UTF8( escapeString( footprint->GetReference() ) ) ); fprintf( m_file, "DEVICE \"DEV_%s\"\n", TO_UTF8( escapeString( getShapeName( footprint ) ) ) ); fprintf( m_file, "PLACE %g %g\n", MapXTo( footprint->GetPosition().x ), MapYTo( footprint->GetPosition().y ) ); fprintf( m_file, "LAYER %s\n", footprint->GetFlag() ? "BOTTOM" : "TOP" ); fprintf( m_file, "ROTATION %g\n", fp_orient.AsDegrees() ); fprintf( m_file, "SHAPE \"%s\" %s %s\n", TO_UTF8( escapeString( getShapeName( footprint ) ) ), mirror, flip ); // Text on silk layer: RefDes and value (are they actually useful?) for( PCB_TEXT* textItem : { &footprint->Reference(), &footprint->Value() } ) { std::string layer = GenCADLayerName( cu_count, footprint->GetFlag() ? B_SilkS : F_SilkS ); fprintf( m_file, "TEXT %g %g %g %g %s %s \"%s\"", textItem->GetFPRelativePosition().x / SCALE_FACTOR, -textItem->GetFPRelativePosition().y / SCALE_FACTOR, textItem->GetTextWidth() / SCALE_FACTOR, textItem->GetTextAngle().AsDegrees(), mirror, layer.c_str(), TO_UTF8( escapeString( textItem->GetText() ) ) ); BOX2I textBox = textItem->GetTextBox(); fprintf( m_file, " 0 0 %g %g\n", textBox.GetWidth() / SCALE_FACTOR, textBox.GetHeight() / SCALE_FACTOR ); } // The SHEET is a 'generic description' for referencing the component fprintf( m_file, "SHEET \"RefDes: %s, Value: %s\"\n", TO_UTF8( footprint->GetReference() ), TO_UTF8( footprint->GetValue() ) ); } fputs( "$ENDCOMPONENTS\n\n", m_file ); } void GENCAD_EXPORTER::CreateSignalsSection() { // Emit the netlist (which is actually the thing for which GenCAD is used these // days!); tracks are handled later wxString msg; NETINFO_ITEM* net; int NbNoConn = 1; fputs( "$SIGNALS\n", m_file ); for( unsigned ii = 0; ii < m_board->GetNetCount(); ii++ ) { net = m_board->FindNet( ii ); if( net ) { if( net->GetNetname() == wxEmptyString ) // dummy netlist (no connection) { msg.Printf( wxT( "NoConnection%d" ), NbNoConn++ ); } if( net->GetNetCode() <= 0 ) // dummy netlist (no connection) continue; msg = wxT( "SIGNAL \"" ) + escapeString( net->GetNetname() ) + wxT( "\"" ); fputs( TO_UTF8( msg ), m_file ); fputs( "\n", m_file ); for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetNetCode() != net->GetNetCode() ) continue; msg.Printf( wxT( "NODE \"%s\" \"%s\"" ), escapeString( footprint->GetReference() ), escapeString( pad->GetNumber() ) ); fputs( TO_UTF8( msg ), m_file ); fputs( "\n", m_file ); } } } } fputs( "$ENDSIGNALS\n\n", m_file ); } bool GENCAD_EXPORTER::CreateHeaderInfoData() { wxString msg; fputs( "$HEADER\n", m_file ); fputs( "GENCAD 1.4\n", m_file ); // Please note: GenCAD syntax requires quoted strings if they can contain spaces msg.Printf( wxT( "USER \"KiCad %s\"\n" ), GetBuildVersion() ); fputs( TO_UTF8( msg ), m_file ); msg = wxT( "DRAWING \"" ) + m_board->GetFileName() + wxT( "\"\n" ); fputs( TO_UTF8( msg ), m_file ); wxString rev = ExpandTextVars( m_board->GetTitleBlock().GetRevision(), m_board->GetProject() ); wxString date = ExpandTextVars( m_board->GetTitleBlock().GetDate(), m_board->GetProject() ); msg = wxT( "REVISION \"" ) + rev + wxT( " " ) + date + wxT( "\"\n" ); fputs( TO_UTF8( msg ), m_file ); fputs( "UNITS INCH\n", m_file ); // giving 0 as the argument to Map{X,Y}To returns the scaled origin point msg.Printf( wxT( "ORIGIN %g %g\n" ), m_storeOriginCoords ? MapXTo( 0 ) : 0, m_storeOriginCoords ? MapYTo( 0 ) : 0 ); fputs( TO_UTF8( msg ), m_file ); fputs( "INTERTRACK 0\n", m_file ); fputs( "$ENDHEADER\n\n", m_file ); return true; } void GENCAD_EXPORTER::CreateRoutesSection() { /* Creates the section ROUTES * that handles tracks, vias * TODO: add zones * section: * $ROUTE * ... * $ENROUTE * Track segments must be sorted by nets */ int vianum = 1; int old_netcode, old_width, old_layer; LSET master_layermask = m_board->GetDesignSettings().GetEnabledLayers(); int cu_count = m_board->GetCopperLayerCount(); TRACKS tracks( m_board->Tracks() ); std::sort( tracks.begin(), tracks.end(), []( const PCB_TRACK* a, const PCB_TRACK* b ) { if( a->GetNetCode() == b->GetNetCode() ) { if( a->GetWidth() == b->GetWidth() ) return ( a->GetLayer() < b->GetLayer() ); return ( a->GetWidth() < b->GetWidth() ); } return ( a->GetNetCode() < b->GetNetCode() ); } ); fputs( "$ROUTES\n", m_file ); old_netcode = -1; old_width = -1; old_layer = -1; for( PCB_TRACK* track : tracks ) { if( old_netcode != track->GetNetCode() ) { old_netcode = track->GetNetCode(); NETINFO_ITEM* net = track->GetNet(); wxString netname; if( net && (net->GetNetname() != wxEmptyString) ) netname = net->GetNetname(); else netname = wxT( "_noname_" ); fprintf( m_file, "ROUTE \"%s\"\n", TO_UTF8( escapeString( netname ) ) ); } if( old_width != track->GetWidth() ) { old_width = track->GetWidth(); fprintf( m_file, "TRACK TRACK%d\n", track->GetWidth() ); } if( track->Type() == PCB_TRACE_T ) { if( old_layer != track->GetLayer() ) { old_layer = track->GetLayer(); fprintf( m_file, "LAYER %s\n", GenCADLayerName( cu_count, track->GetLayer() ).c_str() ); } fprintf( m_file, "LINE %g %g %g %g\n", MapXTo( track->GetStart().x ), MapYTo( track->GetStart().y ), MapXTo( track->GetEnd().x ), MapYTo( track->GetEnd().y ) ); } if( track->Type() == PCB_VIA_T ) { const PCB_VIA* via = static_cast(track); LSET vset = via->GetLayerSet() & master_layermask; fprintf( m_file, "VIA VIA%d.%d.%s %g %g ALL %g via%d\n", via->GetWidth(), via->GetDrillValue(), fmt_mask( vset ).c_str(), MapXTo( via->GetStart().x ), MapYTo( via->GetStart().y ), via->GetDrillValue() / SCALE_FACTOR, vianum++ ); } } fputs( "$ENDROUTES\n\n", m_file ); } void GENCAD_EXPORTER::CreateDevicesSection() { /* Creates the section $DEVICES * This is a list of footprints properties * ( Shapes are in section $SHAPE ) */ std::set emitted; fputs( "$DEVICES\n", m_file ); // componentShapes (as a std::map<>) does not give the same order for items between 2 runs. // This is annoying when one want to compare 2 similar files. // Therefore we store the strings in a wxArrayString, and after created, strings will be sorted. // This is not perfect, because the selected footprint used to create the DEVICE section is // not always the same between runs, but this is much better than no sort wxArrayString data; for( const auto& componentShape : componentShapes ) { const wxString& shapeName = shapeNames[componentShape.second]; bool newDevice; std::tie( std::ignore, newDevice ) = emitted.insert( shapeName ); if( !newDevice ) // do not repeat device definitions continue; const FOOTPRINT* footprint = componentShape.first; wxString txt; txt.Printf( "\nDEVICE \"DEV_%s\"\n", escapeString( shapeName ) ); txt += wxString::Format( "PART \"%s\"\n", escapeString( footprint->GetValue() ) ); txt += wxString::Format( "PACKAGE \"%s\"\n", escapeString( footprint->GetFPID().Format() ) ); data.Add( txt ); } data.Sort(); for( wxString& item : data ) fprintf( m_file, "%s", TO_UTF8( item ) ); fputs( "$ENDDEVICES\n\n", m_file ); } void GENCAD_EXPORTER::CreateBoardSection( ) { // Creates the section $BOARD. // We output here only the board perimeter fputs( "$BOARD\n", m_file ); // Extract the board edges SHAPE_POLY_SET outline; m_board->GetBoardPolygonOutlines( outline ); for( auto seg1 = outline.IterateSegmentsWithHoles(); seg1; seg1++ ) { SEG seg = *seg1; fprintf( m_file, "LINE %g %g %g %g\n", MapXTo( seg.A.x ), MapYTo( seg.A.y ), MapXTo( seg.B.x ), MapYTo( seg.B.y ) ); } fputs( "$ENDBOARD\n\n", m_file ); } /* Creates the section "$TRACKS" * This sections give the list of widths (tools) used in tracks and vias * format: * $TRACK * TRACK * $ENDTRACK * * Each tool name is build like this: "TRACK" + track width. * For instance for a width = 120 : name = "TRACK120". */ void GENCAD_EXPORTER::CreateTracksInfoData() { // Find thickness used for traces std::set trackinfo; for( PCB_TRACK* track : m_board->Tracks() ) trackinfo.insert( track->GetWidth() ); // Write data fputs( "$TRACKS\n", m_file ); for( int size : trackinfo ) fprintf( m_file, "TRACK TRACK%d %g\n", size, size / SCALE_FACTOR ); fputs( "$ENDTRACKS\n\n", m_file ); } /* Creates the shape of a footprint (section SHAPE) * The shape is always given "normal" (Orient 0, not mirrored) * It's almost guaranteed that the silk layer will be imported wrong but * the shape also contains the pads! */ void GENCAD_EXPORTER::FootprintWriteShape( FOOTPRINT* aFootprint, const wxString& aShapeName ) { /* creates header: */ fprintf( m_file, "\nSHAPE \"%s\"\n", TO_UTF8( escapeString( aShapeName ) ) ); if( aFootprint->GetAttributes() & FP_THROUGH_HOLE ) fprintf( m_file, "INSERT TH\n" ); else fprintf( m_file, "INSERT SMD\n" ); // Silk outline; wildly interpreted by various importers: // CAM350 read it right but only closed shapes // ProntoPlace double-flip it (at least the pads are correct) // GerberTool usually get it right... for( BOARD_ITEM* item : aFootprint->GraphicalItems() ) { if( item->Type() == PCB_SHAPE_T && ( item->GetLayer() == F_SilkS || item->GetLayer() == B_SilkS ) ) { PCB_SHAPE* shape = static_cast( item ); VECTOR2I start = shape->GetStart() - aFootprint->GetPosition(); VECTOR2I end = shape->GetEnd() - aFootprint->GetPosition(); VECTOR2I center = shape->GetCenter() - aFootprint->GetPosition(); RotatePoint( start, -aFootprint->GetOrientation() ); RotatePoint( end, -aFootprint->GetOrientation() ); RotatePoint( center, -aFootprint->GetOrientation() ); switch( shape->GetShape() ) { case SHAPE_T::SEGMENT: fprintf( m_file, "LINE %g %g %g %g\n", start.x / SCALE_FACTOR, -start.y / SCALE_FACTOR, end.x / SCALE_FACTOR, -end.y / SCALE_FACTOR ); break; case SHAPE_T::RECTANGLE: fprintf( m_file, "LINE %g %g %g %g\n", start.x / SCALE_FACTOR, -start.y / SCALE_FACTOR, end.x / SCALE_FACTOR, -end.y / SCALE_FACTOR ); fprintf( m_file, "LINE %g %g %g %g\n", end.x / SCALE_FACTOR, -start.y / SCALE_FACTOR, end.x / SCALE_FACTOR, -end.y / SCALE_FACTOR ); fprintf( m_file, "LINE %g %g %g %g\n", end.x / SCALE_FACTOR, -end.y / SCALE_FACTOR, start.x / SCALE_FACTOR, -end.y / SCALE_FACTOR ); fprintf( m_file, "LINE %g %g %g %g\n", start.x / SCALE_FACTOR, -end.y / SCALE_FACTOR, start.x / SCALE_FACTOR, -start.y / SCALE_FACTOR ); break; case SHAPE_T::CIRCLE: { int radius = KiROUND( GetLineLength( end, start ) ); fprintf( m_file, "CIRCLE %g %g %g\n", start.x / SCALE_FACTOR, -start.y / SCALE_FACTOR, radius / SCALE_FACTOR ); break; } case SHAPE_T::ARC: if( shape->GetArcAngle() > ANGLE_0 ) std::swap( start, end ); fprintf( m_file, "ARC %g %g %g %g %g %g\n", start.x / SCALE_FACTOR, -start.y / SCALE_FACTOR, end.x / SCALE_FACTOR, -end.y / SCALE_FACTOR, center.x / SCALE_FACTOR, -center.y / SCALE_FACTOR ); break; case SHAPE_T::POLY: // Not exported (TODO) break; default: wxFAIL_MSG( wxString::Format( wxT( "Shape type %d invalid." ), item->Type() ) ); break; } } } }