/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright 2013-2017 CERN * Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file cached_container.cpp * @brief Class to store instances of VERTEX with caching. It allows storing VERTEX objects and * associates them with VERTEX_ITEMs. This leads to a possibility of caching vertices data in the * GPU memory and a fast reuse of that data. */ #include #include #include #include #include #include #include #ifdef KICAD_GAL_PROFILE #include #include #endif /* KICAD_GAL_PROFILE */ using namespace KIGFX; CACHED_CONTAINER::CACHED_CONTAINER( unsigned int aSize ) : VERTEX_CONTAINER( aSize ), m_item( nullptr ), m_chunkSize( 0 ), m_chunkOffset( 0 ), m_maxIndex( 0 ) { // In the beginning there is only free space m_freeChunks.insert( std::make_pair( aSize, 0 ) ); } void CACHED_CONTAINER::SetItem( VERTEX_ITEM* aItem ) { assert( aItem != nullptr ); unsigned int itemSize = aItem->GetSize(); m_item = aItem; m_chunkSize = itemSize; // Get the previously set offset if the item was stored previously m_chunkOffset = itemSize > 0 ? aItem->GetOffset() : -1; } void CACHED_CONTAINER::FinishItem() { assert( m_item != nullptr ); unsigned int itemSize = m_item->GetSize(); // Finishing the previously edited item if( itemSize < m_chunkSize ) { // There is some not used but reserved memory left, so we should return it to the pool int itemOffset = m_item->GetOffset(); // Add the not used memory back to the pool addFreeChunk( itemOffset + itemSize, m_chunkSize - itemSize ); // mergeFreeChunks(); // veery slow and buggy m_maxIndex = std::max( itemOffset + itemSize, m_maxIndex ); } if( itemSize > 0 ) m_items.insert( m_item ); m_item = nullptr; m_chunkSize = 0; m_chunkOffset = 0; #if CACHED_CONTAINER_TEST > 1 test(); #endif } VERTEX* CACHED_CONTAINER::Allocate( unsigned int aSize ) { assert( m_item != nullptr ); assert( IsMapped() ); if( m_failed ) return nullptr; unsigned int itemSize = m_item->GetSize(); unsigned int newSize = itemSize + aSize; if( newSize > m_chunkSize ) { // There is not enough space in the currently reserved chunk, so we have to resize it if( !reallocate( newSize ) ) { m_failed = true; return nullptr; } } VERTEX* reserved = &m_vertices[m_chunkOffset + itemSize]; // Now the item officially possesses the memory chunk m_item->setSize( newSize ); // The content has to be updated m_dirty = true; #if CACHED_CONTAINER_TEST > 0 test(); #endif #if CACHED_CONTAINER_TEST > 2 showFreeChunks(); showUsedChunks(); #endif return reserved; } void CACHED_CONTAINER::Delete( VERTEX_ITEM* aItem ) { assert( aItem != nullptr ); assert( m_items.find( aItem ) != m_items.end() || aItem->GetSize() == 0 ); int size = aItem->GetSize(); if( size == 0 ) return; // Item is not stored here int offset = aItem->GetOffset(); // Insert a free memory chunk entry in the place where item was stored addFreeChunk( offset, size ); // Indicate that the item is not stored in the container anymore aItem->setSize( 0 ); m_items.erase( aItem ); #if CACHED_CONTAINER_TEST > 0 test(); #endif // This dynamic memory freeing optimize memory usage, but in fact can create // out of memory issues because freeing and reallocation large chunks of memory // can create memory fragmentation and no room to reallocate large chunks // after many free/reallocate cycles during a session using the same complex board // So it can be disable. // Currently: it is disable to avoid "out of memory" issues #if 0 // Dynamic memory freeing, there is no point in holding // a large amount of memory when there is no use for it if( m_freeSpace > ( 0.75 * m_currentSize ) && m_currentSize > m_initialSize ) { defragmentResize( 0.5 * m_currentSize ); } #endif } void CACHED_CONTAINER::Clear() { m_freeSpace = m_currentSize; m_maxIndex = 0; m_failed = false; // Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held // in the container anymore for( ITEMS::iterator it = m_items.begin(); it != m_items.end(); ++it ) ( *it )->setSize( 0 ); m_items.clear(); // Now there is only free space left m_freeChunks.clear(); m_freeChunks.insert( std::make_pair( m_freeSpace, 0 ) ); } bool CACHED_CONTAINER::reallocate( unsigned int aSize ) { assert( aSize > 0 ); assert( IsMapped() ); unsigned int itemSize = m_item->GetSize(); // Find a free space chunk >= aSize FREE_CHUNK_MAP::iterator newChunk = m_freeChunks.lower_bound( aSize ); // Is there enough space to store vertices? if( newChunk == m_freeChunks.end() ) { bool result; // Would it be enough to double the current space? if( aSize < m_freeSpace + m_currentSize ) { // Yes: exponential growing result = defragmentResize( m_currentSize * 2 ); } else { // No: grow to the nearest greater power of 2 result = defragmentResize( pow( 2, ceil( log2( m_currentSize * 2 + aSize ) ) ) ); } if( !result ) return false; newChunk = m_freeChunks.lower_bound( aSize ); assert( newChunk != m_freeChunks.end() ); } // Parameters of the allocated chunk unsigned int newChunkSize = getChunkSize( *newChunk ); unsigned int newChunkOffset = getChunkOffset( *newChunk ); assert( newChunkSize >= aSize ); assert( newChunkOffset < m_currentSize ); // Check if the item was previously stored in the container if( itemSize > 0 ) { // The item was reallocated, so we have to copy all the old data to the new place memcpy( &m_vertices[newChunkOffset], &m_vertices[m_chunkOffset], itemSize * VERTEX_SIZE ); // Free the space used by the previous chunk addFreeChunk( m_chunkOffset, m_chunkSize ); } // Remove the new allocated chunk from the free space pool m_freeChunks.erase( newChunk ); m_freeSpace -= newChunkSize; m_chunkSize = newChunkSize; m_chunkOffset = newChunkOffset; m_item->setOffset( m_chunkOffset ); return true; } void CACHED_CONTAINER::defragment( VERTEX* aTarget ) { // Defragmentation ITEMS::iterator it, it_end; int newOffset = 0; for( VERTEX_ITEM* item : m_items ) { int itemOffset = item->GetOffset(); int itemSize = item->GetSize(); // Move an item to the new container memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VERTEX_SIZE ); // Update new offset item->setOffset( newOffset ); // Move to the next free space newOffset += itemSize; } // Move the current item and place it at the end if( m_item->GetSize() > 0 ) { memcpy( &aTarget[newOffset], &m_vertices[m_item->GetOffset()], m_item->GetSize() * VERTEX_SIZE ); m_item->setOffset( newOffset ); m_chunkOffset = newOffset; } m_maxIndex = usedSpace(); } void CACHED_CONTAINER::mergeFreeChunks() { if( m_freeChunks.size() <= 1 ) // There are no chunks that can be merged return; #ifdef KICAD_GAL_PROFILE PROF_TIMER totalTime; #endif /* KICAD_GAL_PROFILE */ // Reversed free chunks map - this one stores chunk size with its offset as the key std::list freeChunks; FREE_CHUNK_MAP::const_iterator it, it_end; for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it ) { freeChunks.emplace_back( it->second, it->first ); } m_freeChunks.clear(); freeChunks.sort(); std::list::const_iterator itf, itf_end; unsigned int offset = freeChunks.front().first; unsigned int size = freeChunks.front().second; freeChunks.pop_front(); for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf ) { if( itf->first == offset + size ) { // These chunks can be merged, so just increase the current chunk size and go on size += itf->second; } else { // These chunks cannot be merged // So store the previous one m_freeChunks.insert( std::make_pair( size, offset ) ); // and let's check the next chunk offset = itf->first; size = itf->second; } } // Add the last one m_freeChunks.insert( std::make_pair( size, offset ) ); #if CACHED_CONTAINER_TEST > 0 test(); #endif } void CACHED_CONTAINER::addFreeChunk( unsigned int aOffset, unsigned int aSize ) { assert( aOffset + aSize <= m_currentSize ); assert( aSize > 0 ); m_freeChunks.insert( std::make_pair( aSize, aOffset ) ); m_freeSpace += aSize; } void CACHED_CONTAINER::showFreeChunks() { } void CACHED_CONTAINER::showUsedChunks() { } void CACHED_CONTAINER::test() { #ifdef KICAD_GAL_PROFILE // Free space check unsigned int freeSpace = 0; FREE_CHUNK_MAP::iterator itf; for( itf = m_freeChunks.begin(); itf != m_freeChunks.end(); ++itf ) freeSpace += getChunkSize( *itf ); assert( freeSpace == m_freeSpace ); // Used space check unsigned int used_space = 0; ITEMS::iterator itr; for( itr = m_items.begin(); itr != m_items.end(); ++itr ) used_space += ( *itr )->GetSize(); // If we have a chunk assigned, then there must be an item edited assert( m_chunkSize == 0 || m_item ); // Currently reserved chunk is also counted as used used_space += m_chunkSize; assert( ( m_freeSpace + used_space ) == m_currentSize ); // Overlapping check TODO #endif /* KICAD_GAL_PROFILE */ }