/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2004-2019 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2007 Dick Hollenbeck, dick@softplc.com * Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include /** * compare 2 convex polygons and return true if distance > aDist (if no error DRC) * i.e if for each edge of the first polygon distance from each edge of the other polygon * is >= aDist */ bool poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount, int aAllowedDist, int* actualDist ) { /* Test if one polygon is contained in the other and thus the polygon overlap. * This case is not covered by the following check if one polygone is * completely contained in the other (because edges don't intersect)! */ if( TestPointInsidePolygon( aTref, aTrefCount, aTtest[0] ) ) { *actualDist = 0; return false; } if( TestPointInsidePolygon( aTtest, aTtestCount, aTref[0] ) ) { *actualDist = 0; return false; } for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ ) { // for all edges in aTref for( int kk = 0, ll = aTtestCount - 1; kk < aTtestCount; ll = kk, kk++ ) { // for all edges in aTtest double d; int intersect = TestForIntersectionOfStraightLineSegments( aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y, aTtest[kk].x, aTtest[kk].y, aTtest[ll].x, aTtest[ll].y, nullptr, nullptr, &d ); if( intersect ) { *actualDist = 0; return false; } if( d < aAllowedDist ) { *actualDist = KiROUND( d ); return false; } } } return true; } /* * compare a trapezoid (can be rectangle) and a segment and return true if distance > aDist */ bool poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd, int aDist, int* aActual ) { /* Test if the segment is contained in the polygon. * This case is not covered by the following check if the segment is * completely contained in the polygon (because edges don't intersect)! */ if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) ) { *aActual = 0; return false; } for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ ) { // for all edges in polygon double d; if( TestForIntersectionOfStraightLineSegments( aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y, aSegStart.x, aSegStart.y, aSegEnd.x, aSegEnd.y, NULL, NULL, &d ) ) { *aActual = 0; return false; } if( d < aDist ) { *aActual = KiROUND( d ); return false; } } return true; } void DRC::doTrackDrc( BOARD_COMMIT& aCommit, TRACK* aRefSeg, TRACKS::iterator aStartIt, TRACKS::iterator aEndIt, bool aTestZones ) { BOARD_DESIGN_SETTINGS& bds = m_pcb->GetDesignSettings(); SEG refSeg( aRefSeg->GetStart(), aRefSeg->GetEnd() ); PCB_LAYER_ID refLayer = aRefSeg->GetLayer(); LSET refLayerSet = aRefSeg->GetLayerSet(); EDA_RECT refSegBB = aRefSeg->GetBoundingBox(); int refSegWidth = aRefSeg->GetWidth(); /******************************************/ /* Phase 0 : via DRC tests : */ /******************************************/ if( aRefSeg->Type() == PCB_VIA_T ) { VIA *refvia = static_cast( aRefSeg ); int viaAnnulus = ( refvia->GetWidth() - refvia->GetDrill() ) / 2; int minAnnulus = refvia->GetMinAnnulus( &m_clearanceSource ); // test if the via size is smaller than minimum if( refvia->GetViaType() == VIATYPE::MICROVIA ) { if( viaAnnulus < minAnnulus ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TOO_SMALL_VIA_ANNULUS ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minAnnulus, true ), MessageTextFromValue( userUnits(), viaAnnulus, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } if( refvia->GetWidth() < bds.m_MicroViasMinSize ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TOO_SMALL_MICROVIA ); m_msg.Printf( drcItem->GetErrorText() + _( " (board minimum %s; actual %s)" ), MessageTextFromValue( userUnits(), bds.m_MicroViasMinSize, true ), MessageTextFromValue( userUnits(), refvia->GetWidth(), true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } } else { if( bds.m_ViasMinAnnulus > minAnnulus ) { minAnnulus = bds.m_ViasMinAnnulus; m_clearanceSource = _( "board minimum" ); } if( viaAnnulus < minAnnulus ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TOO_SMALL_VIA_ANNULUS ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minAnnulus, true ), MessageTextFromValue( userUnits(), viaAnnulus, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } if( refvia->GetWidth() < bds.m_ViasMinSize ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TOO_SMALL_VIA ); m_msg.Printf( drcItem->GetErrorText() + _( " (board minimum %s; actual %s)" ), MessageTextFromValue( userUnits(), bds.m_ViasMinSize, true ), MessageTextFromValue( userUnits(), refvia->GetWidth(), true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } } // test if via's hole is bigger than its diameter // This test is necessary since the via hole size and width can be modified // and a default via hole can be bigger than some vias sizes if( refvia->GetDrillValue() > refvia->GetWidth() ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_VIA_HOLE_BIGGER ); m_msg.Printf( drcItem->GetErrorText() + _( " (diameter %s; drill %s)" ), MessageTextFromValue( userUnits(), refvia->GetWidth(), true ), MessageTextFromValue( userUnits(), refvia->GetDrillValue(), true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } // test if the type of via is allowed due to design rules if( refvia->GetViaType() == VIATYPE::MICROVIA && !bds.m_MicroViasAllowed ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_MICROVIA_NOT_ALLOWED ); m_msg.Printf( drcItem->GetErrorText() + _( " (board design rule constraints)" ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } // test if the type of via is allowed due to design rules if( refvia->GetViaType() == VIATYPE::BLIND_BURIED && !bds.m_BlindBuriedViaAllowed ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_BURIED_VIA_NOT_ALLOWED ); m_msg.Printf( drcItem->GetErrorText() + _( " (board design rule constraints)" ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } // For microvias: test if they are blind vias and only between 2 layers // because they are used for very small drill size and are drill by laser // and **only one layer** can be drilled if( refvia->GetViaType() == VIATYPE::MICROVIA ) { PCB_LAYER_ID layer1, layer2; bool err = true; refvia->LayerPair( &layer1, &layer2 ); if( layer1 > layer2 ) std::swap( layer1, layer2 ); if( layer2 == B_Cu && layer1 == bds.GetCopperLayerCount() - 2 ) err = false; else if( layer1 == F_Cu && layer2 == In1_Cu ) err = false; if( err ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_MICROVIA_TOO_MANY_LAYERS ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s and %s not adjacent)" ), m_pcb->GetLayerName( layer1 ), m_pcb->GetLayerName( layer2 ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refvia ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refvia->GetPosition() ); addMarkerToPcb( aCommit, marker ); } } } else // This is a track segment { int minWidth, maxWidth; aRefSeg->GetWidthConstraints( &minWidth, &maxWidth, &m_clearanceSource ); int errorCode = 0; int constraintWidth; if( refSegWidth < minWidth ) { errorCode = DRCE_TOO_SMALL_TRACK_WIDTH; constraintWidth = minWidth; } else if( refSegWidth > maxWidth ) { errorCode = DRCE_TOO_LARGE_TRACK_WIDTH; constraintWidth = maxWidth; } if( errorCode ) { wxPoint refsegMiddle = ( aRefSeg->GetStart() + aRefSeg->GetEnd() ) / 2; DRC_ITEM* drcItem = new DRC_ITEM( errorCode ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), constraintWidth, true ), MessageTextFromValue( userUnits(), refSegWidth, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg ); MARKER_PCB* marker = new MARKER_PCB( drcItem, refsegMiddle ); addMarkerToPcb( aCommit, marker ); } } /******************************************/ /* Phase 1 : test DRC track to pads : */ /******************************************/ // Compute the min distance to pads for( MODULE* mod : m_pcb->Modules() ) { // Don't preflight at the module level. Getting a module's bounding box goes // through all its pads anyway (so it's no faster), and also all its drawings // (so it's in fact slower). for( D_PAD* pad : mod->Pads() ) { // Preflight based on bounding boxes. EDA_RECT inflatedBB = refSegBB; inflatedBB.Inflate( pad->GetBoundingRadius() + m_largestClearance ); if( !inflatedBB.Contains( pad->GetPosition() ) ) continue; if( !( pad->GetLayerSet() & refLayerSet ).any() ) continue; // No need to check pads with the same net as the refSeg. if( pad->GetNetCode() && aRefSeg->GetNetCode() == pad->GetNetCode() ) continue; if( pad->GetDrillSize().x > 0 ) { // For hole testing we use a dummy pad which is a copy of the current pad // shrunk down to nothing but its hole. D_PAD dummypad( *pad ); dummypad.SetSize( pad->GetDrillSize() ); dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); // Ensure the hole is on all copper layers const static LSET all_cu = LSET::AllCuMask(); dummypad.SetLayerSet( all_cu | dummypad.GetLayerSet() ); int minClearance; DRC_RULE* rule = GetRule( aRefSeg, &dummypad, CLEARANCE_CONSTRAINT ); if( rule ) { m_clearanceSource = wxString::Format( _( "'%s' rule" ), rule->m_Name ); minClearance = rule->m_Clearance.Min; } else { minClearance = aRefSeg->GetClearance( nullptr, &m_clearanceSource ); } /* Treat an oval hole as a line segment along the hole's major axis, * shortened by half its minor axis. * A circular hole is just a degenerate case of an oval hole. */ wxPoint slotStart, slotEnd; int slotWidth; pad->GetOblongGeometry( pad->GetDrillSize(), &slotStart, &slotEnd, &slotWidth ); slotStart += pad->GetPosition(); slotEnd += pad->GetPosition(); SEG slotSeg( slotStart, slotEnd ); int widths = ( slotWidth + refSegWidth ) / 2; int center2centerAllowed = minClearance + widths + bds.GetDRCEpsilon(); // Avoid square-roots if possible (for performance) SEG::ecoord center2center_squared = refSeg.SquaredDistance( slotSeg ); if( center2center_squared < SEG::Square( center2centerAllowed ) ) { int actual = std::max( 0.0, sqrt( center2center_squared ) - widths ); DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TRACK_NEAR_HOLE ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minClearance, true ), MessageTextFromValue( userUnits(), actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, pad ); MARKER_PCB* marker = new MARKER_PCB( drcItem, GetLocation( aRefSeg, slotSeg ) ); addMarkerToPcb( aCommit, marker ); if( !m_reportAllTrackErrors ) return; } } int minClearance = aRefSeg->GetClearance( pad, &m_clearanceSource ); int clearanceAllowed = minClearance - bds.GetDRCEpsilon(); int actual; if( !checkClearanceSegmToPad( refSeg, refSegWidth, pad, clearanceAllowed, &actual ) ) { actual = std::max( 0, actual ); SEG padSeg( pad->GetPosition(), pad->GetPosition() ); DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TRACK_NEAR_PAD ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minClearance, true ), MessageTextFromValue( userUnits(), actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, pad ); MARKER_PCB* marker = new MARKER_PCB( drcItem, GetLocation( aRefSeg, padSeg ) ); addMarkerToPcb( aCommit, marker ); if( !m_reportAllTrackErrors ) return; } } } /***********************************************/ /* Phase 2: test DRC with other track segments */ /***********************************************/ // Test the reference segment with other track segments for( auto it = aStartIt; it != aEndIt; it++ ) { TRACK* track = *it; // No problem if segments have the same net code: if( aRefSeg->GetNetCode() == track->GetNetCode() ) continue; // No problem if tracks are on different layers: // Note that while the general case of GetLayerSet intersection always works, // the others are much faster. bool sameLayers; if( aRefSeg->Type() == PCB_VIA_T ) { if( track->Type() == PCB_VIA_T ) sameLayers = ( refLayerSet & track->GetLayerSet() ).any(); else sameLayers = refLayerSet.test( track->GetLayer() ); } else { if( track->Type() == PCB_VIA_T ) sameLayers = track->GetLayerSet().test( refLayer ); else sameLayers = track->GetLayer() == refLayer; } if( !sameLayers ) continue; // Preflight based on worst-case inflated bounding boxes: EDA_RECT trackBB = track->GetBoundingBox(); trackBB.Inflate( m_largestClearance ); if( !trackBB.Intersects( refSegBB ) ) continue; int minClearance = aRefSeg->GetClearance( track, &m_clearanceSource ); SEG trackSeg( track->GetStart(), track->GetEnd() ); int widths = ( refSegWidth + track->GetWidth() ) / 2; int center2centerAllowed = minClearance + widths; // Avoid square-roots if possible (for performance) SEG::ecoord center2center_squared = refSeg.SquaredDistance( trackSeg ); OPT_VECTOR2I intersection = refSeg.Intersect( trackSeg ); // Check two tracks crossing first as it reports a DRCE without distances if( intersection ) { DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TRACKS_CROSSING ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, track ); MARKER_PCB* marker = new MARKER_PCB( drcItem, (wxPoint) intersection.get() ); addMarkerToPcb( aCommit, marker ); if( !m_reportAllTrackErrors ) return; } else if( center2center_squared < SEG::Square( center2centerAllowed ) ) { int errorCode = DRCE_TRACK_ENDS; if( aRefSeg->Type() == PCB_VIA_T && track->Type() == PCB_VIA_T ) errorCode = DRCE_VIA_NEAR_VIA; else if( aRefSeg->Type() == PCB_VIA_T || track->Type() == PCB_VIA_T ) errorCode = DRCE_VIA_NEAR_TRACK; else if( refSeg.ApproxParallel( trackSeg ) ) errorCode = DRCE_TRACK_SEGMENTS_TOO_CLOSE; int actual = std::max( 0.0, sqrt( center2center_squared ) - widths ); DRC_ITEM* drcItem = new DRC_ITEM( errorCode ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minClearance, true ), MessageTextFromValue( userUnits(), actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, track ); MARKER_PCB* marker = new MARKER_PCB( drcItem, GetLocation( aRefSeg, trackSeg ) ); addMarkerToPcb( aCommit, marker ); if( !m_reportAllTrackErrors ) return; } } /***************************************/ /* Phase 3: test DRC with copper zones */ /***************************************/ // Can be *very* time consumming. if( aTestZones ) { SEG testSeg( aRefSeg->GetStart(), aRefSeg->GetEnd() ); for( ZONE_CONTAINER* zone : m_pcb->Zones() ) { if( zone->GetFilledPolysList().IsEmpty() || zone->GetIsKeepout() ) continue; if( !( refLayerSet & zone->GetLayerSet() ).any() ) continue; if( zone->GetNetCode() && zone->GetNetCode() == aRefSeg->GetNetCode() ) continue; int minClearance = aRefSeg->GetClearance( zone, &m_clearanceSource ); int widths = refSegWidth / 2; int center2centerAllowed = minClearance + widths; SHAPE_POLY_SET* outline = const_cast( &zone->GetFilledPolysList() ); SEG::ecoord center2center_squared = outline->SquaredDistance( testSeg ); // to avoid false positive, due to rounding issues and approxiamtions // in distance and clearance calculations, use a small threshold for distance // (1 micron) #define THRESHOLD_DIST Millimeter2iu( 0.001 ) if( center2center_squared + THRESHOLD_DIST < SEG::Square( center2centerAllowed ) ) { int actual = std::max( 0.0, sqrt( center2center_squared ) - widths ); DRC_ITEM* drcItem = new DRC_ITEM( DRCE_TRACK_NEAR_ZONE ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minClearance, true ), MessageTextFromValue( userUnits(), actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, zone ); MARKER_PCB* marker = new MARKER_PCB( drcItem, GetLocation( aRefSeg, zone ) ); addMarkerToPcb( aCommit, marker ); } } } /***********************************************/ /* Phase 4: test DRC with to board edge */ /***********************************************/ if( m_board_outline_valid ) { int minClearance = bds.m_CopperEdgeClearance; m_clearanceSource = _( "board edge" ); static DRAWSEGMENT dummyEdge; dummyEdge.SetLayer( Edge_Cuts ); if( aRefSeg->GetRuleClearance( &dummyEdge, &minClearance, &m_clearanceSource ) ) /* minClearance and m_clearanceSource set in GetRuleClearance() */; SEG testSeg( aRefSeg->GetStart(), aRefSeg->GetEnd() ); int halfWidth = refSegWidth / 2; int center2centerAllowed = minClearance + halfWidth; for( auto it = m_board_outlines.IterateSegmentsWithHoles(); it; it++ ) { SEG::ecoord center2center_squared = testSeg.SquaredDistance( *it ); if( center2center_squared < SEG::Square( center2centerAllowed ) ) { VECTOR2I pt = testSeg.NearestPoint( *it ); KICAD_T types[] = { PCB_LINE_T, EOT }; DRAWSEGMENT* edge = nullptr; INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { DRAWSEGMENT* test_edge = dynamic_cast( item ); if( !test_edge || test_edge->GetLayer() != Edge_Cuts ) return SEARCH_RESULT::CONTINUE; if( test_edge->HitTest( (wxPoint) pt, minClearance + halfWidth ) ) { edge = test_edge; return SEARCH_RESULT::QUIT; } return SEARCH_RESULT::CONTINUE; }; // Best-efforts search for edge segment BOARD::IterateForward( m_pcb->Drawings(), inspector, nullptr, types ); int actual = std::max( 0.0, sqrt( center2center_squared ) - halfWidth ); int errorCode = ( aRefSeg->Type() == PCB_VIA_T ) ? DRCE_VIA_NEAR_EDGE : DRCE_TRACK_NEAR_EDGE; DRC_ITEM* drcItem = new DRC_ITEM( errorCode ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ), m_clearanceSource, MessageTextFromValue( userUnits(), minClearance, true ), MessageTextFromValue( userUnits(), actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aRefSeg, edge ); MARKER_PCB* marker = new MARKER_PCB( drcItem, (wxPoint) pt ); addMarkerToPcb( aCommit, marker ); } } } } bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual ) { // relativePadPos is the aPad shape position relative to the aRefPad shape position wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos(); int center2center = KiROUND( EuclideanNorm( relativePadPos ) ); // Quick test: Clearance is OK if the bounding circles are further away than aMinClearance if( center2center - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius() >= aMinClearance ) return true; /* Here, pads are near and DRC depends on the pad shapes. We must compare distance using * a fine shape analysis. * Because a circle or oval shape is the easier shape to test, swap pads to have aRefPad be * a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. If aRefPad = TRAPEZOID and aPad = RECT, also swap. */ bool swap_pads; swap_pads = false; // swap pads to make comparisons easier // Note also a ROUNDRECT pad with a corner radius = r can be considered as // a smaller RECT (size - 2*r) with a clearance increased by r // priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE ) { // pad ref shape is here oval, rect, roundrect, chamfered rect, trapezoid or custom switch( aPad->GetShape() ) { case PAD_SHAPE_CIRCLE: swap_pads = true; break; case PAD_SHAPE_OVAL: swap_pads = true; break; case PAD_SHAPE_RECT: case PAD_SHAPE_ROUNDRECT: if( aRefPad->GetShape() != PAD_SHAPE_OVAL ) swap_pads = true; break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_CHAMFERED_RECT: case PAD_SHAPE_CUSTOM: break; } } if( swap_pads ) { std::swap( aRefPad, aPad ); relativePadPos = -relativePadPos; } bool diag = true; if( ( aRefPad->GetShape() == PAD_SHAPE_CIRCLE || aRefPad->GetShape() == PAD_SHAPE_OVAL ) ) { /* Treat an oval pad as a line segment along the hole's major axis, * shortened by half its minor axis. * A circular pad is just a degenerate case of an oval hole. */ wxPoint refPadStart, refPadEnd; int refPadWidth; aRefPad->GetOblongGeometry( aRefPad->GetSize(), &refPadStart, &refPadEnd, &refPadWidth ); refPadStart += aRefPad->ShapePos(); refPadEnd += aRefPad->ShapePos(); SEG refPadSeg( refPadStart, refPadEnd ); diag = checkClearanceSegmToPad( refPadSeg, refPadWidth, aPad, aMinClearance, aActual ); } else { int dist_extra = 0; // corners of aRefPad (used only for rect/roundrect/trap pad) wxPoint polyref[4]; // corners of aRefPad (used only for custom pad) SHAPE_POLY_SET polysetref; if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aRefPad->GetRoundRectCornerRadius(); dist_extra = padRadius; GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(), aRefPad->GetOrientation() ); } else if( aRefPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT ) { BOARD* board = aRefPad->GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; // The reference pad can be rotated. Calculate the rotated coordinates. // (note, the ref pad position is the origin of coordinates for this drc test) int padRadius = aRefPad->GetRoundRectCornerRadius(); TransformRoundChamferedRectToPolygon( polysetref, wxPoint( 0, 0 ), aRefPad->GetSize(), aRefPad->GetOrientation(), padRadius, aRefPad->GetChamferRectRatio(), aRefPad->GetChamferPositions(), maxError ); } else if( aRefPad->GetShape() == PAD_SHAPE_CUSTOM ) { polysetref.Append( aRefPad->GetCustomShapeAsPolygon() ); // The reference pad can be rotated. Calculate the rotated coordinates. // (note, the ref pad position is the origin of coordinates for this drc test) aRefPad->CustomShapeAsPolygonToBoardPosition( &polysetref, wxPoint( 0, 0 ), aRefPad->GetOrientation() ); } else { // BuildPadPolygon has meaning for rect a trapeziod shapes and returns the 4 corners. aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); } // corners of aPad (used only for rect/roundrect/trap pad) wxPoint polycompare[4]; // corners of aPad (used only custom pad) SHAPE_POLY_SET polysetcompare; switch( aPad->GetShape() ) { case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_RECT: case PAD_SHAPE_CHAMFERED_RECT: case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_CUSTOM: if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aPad->GetRoundRectCornerRadius(); dist_extra = padRadius; GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(), aPad->GetOrientation() ); } else if( aPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT ) { BOARD* board = aRefPad->GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; // The pad to compare can be rotated. Calculate the rotated coordinates. // ( note, the pad to compare position is the relativePadPos for this drc test) int padRadius = aPad->GetRoundRectCornerRadius(); TransformRoundChamferedRectToPolygon( polysetcompare, relativePadPos, aPad->GetSize(), aPad->GetOrientation(), padRadius, aPad->GetChamferRectRatio(), aPad->GetChamferPositions(), maxError ); } else if( aPad->GetShape() == PAD_SHAPE_CUSTOM ) { polysetcompare.Append( aPad->GetCustomShapeAsPolygon() ); // The pad to compare can be rotated. Calculate the rotated coordinates. // ( note, the pad to compare position is the relativePadPos for this drc test) aPad->CustomShapeAsPolygonToBoardPosition( &polysetcompare, relativePadPos, aPad->GetOrientation() ); } else { aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; } // And now test polygons: We have 3 cases: // one poly is complex and the other is basic (has only 4 corners) // both polys are complex // both polys are basic (have only 4 corners) the most usual case if( polysetref.OutlineCount() && polysetcompare.OutlineCount() == 0) { const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 ); // And now test polygons: if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(), polycompare, 4, aMinClearance + dist_extra, aActual ) ) { *aActual = std::max( 0, *aActual - dist_extra ); diag = false; } } else if( polysetref.OutlineCount() == 0 && polysetcompare.OutlineCount()) { const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 ); // And now test polygons: if( !poly2polyDRC((wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(), polyref, 4, aMinClearance + dist_extra, aActual ) ) { *aActual = std::max( 0, *aActual - dist_extra ); diag = false; } } else if( polysetref.OutlineCount() && polysetcompare.OutlineCount() ) { const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 ); const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 ); // And now test polygons: if( !poly2polyDRC((wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(), (wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(), aMinClearance + dist_extra, aActual ) ) { *aActual = std::max( 0, *aActual - dist_extra ); diag = false; } } else { if( !poly2polyDRC( polyref, 4, polycompare, 4, aMinClearance + dist_extra, aActual ) ) { *aActual = std::max( 0, *aActual - dist_extra ); diag = false; } } break; default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() ); break; } } return diag; } /* * Test if distance between a segment and a pad is > minClearance. Return the actual * distance if it is less. */ bool DRC::checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad, int minClearance, int* aActualDist ) { if( ( pad->GetShape() == PAD_SHAPE_CIRCLE || pad->GetShape() == PAD_SHAPE_OVAL ) ) { /* Treat an oval pad as a line segment along the hole's major axis, * shortened by half its minor axis. * A circular pad is just a degenerate case of an oval hole. */ wxPoint padStart, padEnd; int padWidth; pad->GetOblongGeometry( pad->GetSize(), &padStart, &padEnd, &padWidth ); padStart += pad->ShapePos(); padEnd += pad->ShapePos(); SEG padSeg( padStart, padEnd ); int widths = ( padWidth + refSegWidth ) / 2; int center2centerAllowed = minClearance + widths; // Avoid square-roots if possible (for performance) SEG::ecoord center2center_squared = refSeg.SquaredDistance( padSeg ); if( center2center_squared < SEG::Square( center2centerAllowed ) ) { *aActualDist = std::max( 0.0, sqrt( center2center_squared ) - widths ); return false; } } else if( ( pad->GetShape() == PAD_SHAPE_RECT || pad->GetShape() == PAD_SHAPE_ROUNDRECT ) && ( (int) pad->GetOrientation() % 900 == 0 ) ) { EDA_RECT padBBox = pad->GetBoundingBox(); int widths = refSegWidth / 2; // Note a ROUNDRECT pad with a corner radius = r can be treated as a smaller // RECT (size - 2*r) with a clearance increased by r if( pad->GetShape() == PAD_SHAPE_ROUNDRECT ) { padBBox.Inflate( - pad->GetRoundRectCornerRadius() ); widths += pad->GetRoundRectCornerRadius(); } SHAPE_RECT padShape( padBBox.GetPosition(), padBBox.GetWidth(), padBBox.GetHeight() ); int actual; if( padShape.DoCollide( refSeg, minClearance + widths, &actual ) ) { *aActualDist = std::max( 0, actual - widths ); return false; } } else // Convert the rest to polygons { SHAPE_POLY_SET polyset; BOARD* board = pad->GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; pad->TransformShapeWithClearanceToPolygon( polyset, 0, maxError ); const SHAPE_LINE_CHAIN& refpoly = polyset.COutline( 0 ); int widths = refSegWidth / 2; int actual; if( !poly2segmentDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(), (wxPoint) refSeg.A, (wxPoint) refSeg.B, minClearance + widths, &actual ) ) { *aActualDist = std::max( 0, actual - widths ); return false; } } return true; }