/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009-2013 Lorenzo Mercantonio * Copyright (C) 2014 Cirilo Bernado * Copyright (C) 2013 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 2004-2013 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include <3d_struct.h> #include #include #include #include #include #include #include #include #include #include #include #include #include "../3d-viewer/modelparsers.h" #include #include #include // minimum width (mm) of a VRML line #define MIN_VRML_LINEWIDTH 0.12 // offset for art layers, mm (silk, paste, etc) #define ART_OFFSET 0.025 struct VRML_COLOR { float diffuse_red; float diffuse_grn; float diffuse_blu; float spec_red; float spec_grn; float spec_blu; float emit_red; float emit_grn; float emit_blu; float ambient; float transp; float shiny; VRML_COLOR() { // default green diffuse_red = 0.13; diffuse_grn = 0.81; diffuse_blu = 0.22; spec_red = 0.13; spec_grn = 0.81; spec_blu = 0.22; emit_red = 0.0; emit_grn = 0.0; emit_blu = 0.0; ambient = 1.0; transp = 0; shiny = 0.2; } VRML_COLOR( float dr, float dg, float db, float sr, float sg, float sb, float er, float eg, float eb, float am, float tr, float sh ) { diffuse_red = dr; diffuse_grn = dg; diffuse_blu = db; spec_red = sr; spec_grn = sg; spec_blu = sb; emit_red = er; emit_grn = eg; emit_blu = eb; ambient = am; transp = tr; shiny = sh; } }; enum VRML_COLOR_INDEX { VRML_COLOR_PCB = 0, VRML_COLOR_TRACK, VRML_COLOR_SILK, VRML_COLOR_TIN, VRML_COLOR_LAST }; class MODEL_VRML { private: double layer_z[LAYER_ID_COUNT]; VRML_COLOR colors[VRML_COLOR_LAST]; int iMaxSeg; // max. sides to a small circle double arcMinLen, arcMaxLen; // min and max lengths of an arc chord public: VRML_LAYER holes; VRML_LAYER board; VRML_LAYER top_copper; VRML_LAYER bot_copper; VRML_LAYER top_silk; VRML_LAYER bot_silk; VRML_LAYER top_tin; VRML_LAYER bot_tin; VRML_LAYER plated_holes; double scale; // board internal units to output scaling double minLineWidth; // minimum width of a VRML line segment int precision; // precision of output units double tx; // global translation along X double ty; // global translation along Y double board_thickness; // depth of the PCB LAYER_NUM s_text_layer; int s_text_width; MODEL_VRML() { for( unsigned i = 0; i < DIM( layer_z ); ++i ) layer_z[i] = 0; holes.GetArcParams( iMaxSeg, arcMinLen, arcMaxLen ); // this default only makes sense if the output is in mm board_thickness = 1.6; // pcb green colors[ VRML_COLOR_PCB ] = VRML_COLOR( .07, .3, .12, .07, .3, .12, 0, 0, 0, 1, 0, 0.2 ); // track green colors[ VRML_COLOR_TRACK ] = VRML_COLOR( .08, .5, .1, .08, .5, .1, 0, 0, 0, 1, 0, 0.2 ); // silkscreen white colors[ VRML_COLOR_SILK ] = VRML_COLOR( .9, .9, .9, .9, .9, .9, 0, 0, 0, 1, 0, 0.2 ); // pad silver colors[ VRML_COLOR_TIN ] = VRML_COLOR( .749, .756, .761, .749, .756, .761, 0, 0, 0, 0.8, 0, 0.8 ); precision = 5; } VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex ) { return colors[aIndex]; } void SetOffset( double aXoff, double aYoff ) { tx = aXoff; ty = -aYoff; holes.SetVertexOffsets( aXoff, aYoff ); board.SetVertexOffsets( aXoff, aYoff ); top_copper.SetVertexOffsets( aXoff, aYoff ); bot_copper.SetVertexOffsets( aXoff, aYoff ); top_silk.SetVertexOffsets( aXoff, aYoff ); bot_silk.SetVertexOffsets( aXoff, aYoff ); top_tin.SetVertexOffsets( aXoff, aYoff ); bot_tin.SetVertexOffsets( aXoff, aYoff ); plated_holes.SetVertexOffsets( aXoff, aYoff ); } double GetLayerZ( LAYER_NUM aLayer ) { if( unsigned( aLayer ) >= DIM( layer_z ) ) return 0; return layer_z[ aLayer ]; } void SetLayerZ( LAYER_NUM aLayer, double aValue ) { layer_z[aLayer] = aValue; } // set the scaling of the VRML world bool SetScale( double aWorldScale ) { if( aWorldScale < 0.001 || aWorldScale > 10.0 ) throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) ); scale = aWorldScale * MM_PER_IU; minLineWidth = aWorldScale * MIN_VRML_LINEWIDTH; // set the precision of the VRML coordinates if( aWorldScale < 0.01 ) precision = 8; else if( aWorldScale < 0.1 ) precision = 7; else if( aWorldScale< 1.0 ) precision = 6; else if( aWorldScale < 10.0 ) precision = 5; else precision = 4; double smin = arcMinLen * aWorldScale; double smax = arcMaxLen * aWorldScale; holes.SetArcParams( iMaxSeg, smin, smax ); board.SetArcParams( iMaxSeg, smin, smax ); top_copper.SetArcParams( iMaxSeg, smin, smax); bot_copper.SetArcParams( iMaxSeg, smin, smax); top_silk.SetArcParams( iMaxSeg, smin, smax ); bot_silk.SetArcParams( iMaxSeg, smin, smax ); top_tin.SetArcParams( iMaxSeg, smin, smax ); bot_tin.SetArcParams( iMaxSeg, smin, smax ); plated_holes.SetArcParams( iMaxSeg, smin, smax ); return true; } }; // static var. for dealing with text static MODEL_VRML* model_vrml; // select the VRML layer object to draw on; return true if // a layer has been selected. static bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer ) { switch( layer ) { case B_Cu: *vlayer = &aModel.bot_copper; break; case F_Cu: *vlayer = &aModel.top_copper; break; case B_SilkS: *vlayer = &aModel.bot_silk; break; case F_SilkS: *vlayer = &aModel.top_silk; break; default: return false; } return true; } static void write_triangle_bag( std::ofstream& output_file, VRML_COLOR& color, VRML_LAYER* layer, bool plane, bool top, double top_z, double bottom_z, int aPrecision ) { /* A lot of nodes are not required, but blender sometimes chokes * without them */ static const char* shape_boiler[] = { "Transform {\n", " children [\n", " Group {\n", " children [\n", " Shape {\n", " appearance Appearance {\n", " material Material {\n", 0, // Material marker " }\n", " }\n", " geometry IndexedFaceSet {\n", " solid TRUE\n", " coord Coordinate {\n", " point [\n", 0, // Coordinates marker " ]\n", " }\n", " coordIndex [\n", 0, // Index marker " ]\n", " }\n", " }\n", " ]\n", " }\n", " ]\n", "}\n", 0 // End marker }; int marker_found = 0, lineno = 0; while( marker_found < 4 ) { if( shape_boiler[lineno] ) output_file << shape_boiler[lineno]; else { marker_found++; switch( marker_found ) { case 1: // Material marker output_file << " diffuseColor " << std::setprecision(3); output_file << color.diffuse_red << " "; output_file << color.diffuse_grn << " "; output_file << color.diffuse_blu << "\n"; output_file << " specularColor "; output_file << color.spec_red << " "; output_file << color.spec_grn << " "; output_file << color.spec_blu << "\n"; output_file << " emissiveColor "; output_file << color.emit_red << " "; output_file << color.emit_grn << " "; output_file << color.emit_blu << "\n"; output_file << " ambientIntensity " << color.ambient << "\n"; output_file << " transparency " << color.transp << "\n"; output_file << " shininess " << color.shiny << "\n"; break; case 2: if( plane ) layer->WriteVertices( top_z, output_file, aPrecision ); else layer->Write3DVertices( top_z, bottom_z, output_file, aPrecision ); output_file << "\n"; break; case 3: if( plane ) layer->WriteIndices( top, output_file ); else layer->Write3DIndices( output_file ); output_file << "\n"; break; default: break; } } lineno++; } } static void write_layers( MODEL_VRML& aModel, std::ofstream& output_file, BOARD* aPcb ) { // VRML_LAYER board; aModel.board.Tesselate( &aModel.holes ); double brdz = aModel.board_thickness / 2.0 - ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * aModel.scale; write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_PCB ), &aModel.board, false, false, brdz, -brdz, aModel.precision ); // VRML_LAYER top_copper; aModel.top_copper.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ), &aModel.top_copper, true, true, aModel.GetLayerZ( F_Cu ), 0, aModel.precision ); // VRML_LAYER top_tin; aModel.top_tin.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ), &aModel.top_tin, true, true, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale, 0, aModel.precision ); // VRML_LAYER bot_copper; aModel.bot_copper.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ), &aModel.bot_copper, true, false, aModel.GetLayerZ( B_Cu ), 0, aModel.precision ); // VRML_LAYER bot_tin; aModel.bot_tin.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ), &aModel.bot_tin, true, false, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale, 0, aModel.precision ); // VRML_LAYER PTH; aModel.plated_holes.Tesselate( NULL, true ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ), &aModel.plated_holes, false, false, aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale, aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale, aModel.precision ); // VRML_LAYER top_silk; aModel.top_silk.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ), &aModel.top_silk, true, true, aModel.GetLayerZ( F_SilkS ), 0, aModel.precision ); // VRML_LAYER bot_silk; aModel.bot_silk.Tesselate( &aModel.holes ); write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ), &aModel.bot_silk, true, false, aModel.GetLayerZ( B_SilkS ), 0, aModel.precision ); } static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb ) { int copper_layers = pcb->GetCopperLayerCount(); // We call it 'layer' thickness, but it's the whole board thickness! aModel.board_thickness = pcb->GetDesignSettings().GetBoardThickness() * aModel.scale; double half_thickness = aModel.board_thickness / 2; // Compute each layer's Z value, more or less like the 3d view for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq ) { LAYER_ID i = *seq; if( i < copper_layers ) aModel.SetLayerZ( i, half_thickness - aModel.board_thickness * i / (copper_layers - 1) ); else aModel.SetLayerZ( i, - half_thickness ); // bottom layer } /* To avoid rounding interference, we apply an epsilon to each * successive layer */ double epsilon_z = Millimeter2iu( ART_OFFSET ) * aModel.scale; aModel.SetLayerZ( B_Paste, -half_thickness - epsilon_z * 4 ); aModel.SetLayerZ( B_Adhes, -half_thickness - epsilon_z * 3 ); aModel.SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 2 ); aModel.SetLayerZ( B_Mask, -half_thickness - epsilon_z ); aModel.SetLayerZ( F_Mask, half_thickness + epsilon_z ); aModel.SetLayerZ( F_SilkS, half_thickness + epsilon_z * 2 ); aModel.SetLayerZ( F_Adhes, half_thickness + epsilon_z * 3 ); aModel.SetLayerZ( F_Paste, half_thickness + epsilon_z * 4 ); aModel.SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 ); aModel.SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 ); aModel.SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 ); aModel.SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 ); aModel.SetLayerZ( Edge_Cuts, 0 ); } static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer, double startx, double starty, double endx, double endy, double width ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.minLineWidth) width = aModel.minLineWidth; starty = -starty; endy = -endy; double angle = atan2( endy - starty, endx - startx ) * 180.0 / M_PI; double length = Distance( startx, starty, endx, endy ) + width; double cx = ( startx + endx ) / 2.0; double cy = ( starty + endy ) / 2.0; if( !vlayer->AddSlot( cx, cy, length, width, angle, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); } static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer, double startx, double starty, double endx, double endy, double width ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.minLineWidth ) width = aModel.minLineWidth; starty = -starty; endy = -endy; double hole, radius; radius = Distance( startx, starty, endx, endy ) + ( width / 2); hole = radius - width; if( !vlayer->AddCircle( startx, starty, radius, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); if( hole > 0.0001 ) { if( !vlayer->AddCircle( startx, starty, hole, true ) ) throw( std::runtime_error( vlayer->GetError() ) ); } } static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer, double centerx, double centery, double arc_startx, double arc_starty, double width, double arc_angle ) { VRML_LAYER* vlayer; if( !GetLayer( aModel, layer, &vlayer ) ) return; if( width < aModel.minLineWidth ) width = aModel.minLineWidth; centery = -centery; arc_starty = -arc_starty; if( !vlayer->AddArc( centerx, centery, arc_startx, arc_starty, width, arc_angle, false ) ) throw( std::runtime_error( vlayer->GetError() ) ); } static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg ) { LAYER_NUM layer = drawseg->GetLayer(); double w = drawseg->GetWidth() * aModel.scale; double x = drawseg->GetStart().x * aModel.scale; double y = drawseg->GetStart().y * aModel.scale; double xf = drawseg->GetEnd().x * aModel.scale; double yf = drawseg->GetEnd().y * aModel.scale; // Items on the edge layer are handled elsewhere; just return if( layer == Edge_Cuts ) return; switch( drawseg->GetShape() ) { case S_ARC: export_vrml_arc( aModel, layer, (double) drawseg->GetCenter().x, (double) drawseg->GetCenter().y, (double) drawseg->GetArcStart().x, (double) drawseg->GetArcStart().y, w, drawseg->GetAngle() / 10 ); break; case S_CIRCLE: export_vrml_circle( aModel, layer, x, y, xf, yf, w ); break; default: export_vrml_line( aModel, layer, x, y, xf, yf, w ); break; } } /* C++ doesn't have closures and neither continuation forms... this is * for coupling the vrml_text_callback with the common parameters */ static void vrml_text_callback( int x0, int y0, int xf, int yf ) { LAYER_NUM s_text_layer = model_vrml->s_text_layer; int s_text_width = model_vrml->s_text_width; double scale = model_vrml->scale; export_vrml_line( *model_vrml, s_text_layer, x0 * scale, y0 * scale, xf * scale, yf * scale, s_text_width * scale ); } static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text ) { model_vrml->s_text_layer = text->GetLayer(); model_vrml->s_text_width = text->GetThickness(); wxSize size = text->GetSize(); if( text->IsMirrored() ) NEGATE( size.x ); EDA_COLOR_T color = BLACK; // not actually used, but needed by DrawGraphicText if( text->IsMultilineAllowed() ) { wxArrayString* list = wxStringSplit( text->GetShownText(), '\n' ); std::vector positions; positions.reserve( list->Count() ); text->GetPositionsOfLinesOfMultilineText( positions, list->Count() ); for( unsigned ii = 0; ii < list->Count(); ii++ ) { wxString txt = list->Item( ii ); DrawGraphicText( NULL, NULL, positions[ii], color, txt, text->GetOrientation(), size, text->GetHorizJustify(), text->GetVertJustify(), text->GetThickness(), text->IsItalic(), true, vrml_text_callback ); } delete (list); } else { DrawGraphicText( NULL, NULL, text->GetTextPosition(), color, text->GetShownText(), text->GetOrientation(), size, text->GetHorizJustify(), text->GetVertJustify(), text->GetThickness(), text->IsItalic(), true, vrml_text_callback ); } } static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb ) { // draw graphic items for( EDA_ITEM* drawing = pcb->m_Drawings; drawing != 0; drawing = drawing->Next() ) { LAYER_ID layer = ( (DRAWSEGMENT*) drawing )->GetLayer(); if( layer != F_Cu && layer != B_Cu && layer != B_SilkS && layer != F_SilkS ) continue; switch( drawing->Type() ) { case PCB_LINE_T: export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing ); break; case PCB_TEXT_T: export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing ); break; default: break; } } } // board edges and cutouts static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb ) { CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once allLayerHoles.reserve( 20000 ); // Build a polygon from edge cut items wxString msg; if( !pcb->GetBoardPolygonOutlines( bufferPcbOutlines, allLayerHoles, &msg ) ) { msg << wxT( "\n\n" ) << _( "Unable to calculate the board outlines;\n" "fall back to using the board boundary box." ); wxMessageBox( msg ); } double scale = aModel.scale; int i = 0; int seg; // deal with the solid outlines int nvert = bufferPcbOutlines.GetCornersCount(); while( i < nvert ) { seg = aModel.board.NewContour(); if( seg < 0 ) { msg << wxT( "\n\n" ) << _( "VRML Export Failed:\nCould not add outline to contours." ); wxMessageBox( msg ); return; } while( i < nvert ) { if( bufferPcbOutlines[i].end_contour ) break; aModel.board.AddVertex( seg, bufferPcbOutlines[i].x * scale, -(bufferPcbOutlines[i].y * scale ) ); ++i; } aModel.board.EnsureWinding( seg, false ); ++i; } // deal with the holes nvert = allLayerHoles.GetCornersCount(); i = 0; while( i < nvert ) { seg = aModel.holes.NewContour(); if( seg < 0 ) { msg << wxT( "\n\n" ) << _( "VRML Export Failed:\nCould not add holes to contours." ); wxMessageBox( msg ); return; } while( i < nvert ) { if( allLayerHoles[i].end_contour ) break; aModel.holes.AddVertex( seg, allLayerHoles[i].x * scale, -( allLayerHoles[i].y * scale ) ); ++i; } aModel.holes.EnsureWinding( seg, true ); ++i; } } static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb, double x, double y, double r, LAYER_NUM bottom_layer, LAYER_NUM top_layer, double hole ) { LAYER_NUM layer = top_layer; bool thru = true; // if not a thru hole do not put a hole in the board if( top_layer != F_Cu || bottom_layer != B_Cu ) thru = false; if( thru && hole > 0 ) aModel.holes.AddCircle( x, -y, hole, true ); while( 1 ) { if( layer == B_Cu ) { aModel.bot_copper.AddCircle( x, -y, r ); if( hole > 0 && !thru ) aModel.bot_copper.AddCircle( x, -y, hole, true ); } else if( layer == F_Cu ) { aModel.top_copper.AddCircle( x, -y, r ); if( hole > 0 && !thru ) aModel.top_copper.AddCircle( x, -y, hole, true ); } if( layer == bottom_layer ) break; layer = bottom_layer; } } static void export_vrml_via( MODEL_VRML& aModel, BOARD* pcb, const VIA* via ) { double x, y, r, hole; LAYER_ID top_layer, bottom_layer; hole = via->GetDrillValue() * aModel.scale / 2.0; r = via->GetWidth() * aModel.scale / 2.0; x = via->GetStart().x * aModel.scale; y = via->GetStart().y * aModel.scale; via->LayerPair( &top_layer, &bottom_layer ); // do not render a buried via if( top_layer != F_Cu && bottom_layer != B_Cu ) return; // Export the via padstack export_round_padstack( aModel, pcb, x, y, r, bottom_layer, top_layer, hole ); } static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb ) { for( TRACK* track = pcb->m_Track; track; track = track->Next() ) { if( track->Type() == PCB_VIA_T ) { export_vrml_via( aModel, pcb, (const VIA*) track ); } else if( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu ) export_vrml_line( aModel, track->GetLayer(), track->GetStart().x * aModel.scale, track->GetStart().y * aModel.scale, track->GetEnd().x * aModel.scale, track->GetEnd().y * aModel.scale, track->GetWidth() * aModel.scale ); } } static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb ) { double scale = aModel.scale; double x, y; for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ ) { ZONE_CONTAINER* zone = aPcb->GetArea( ii ); VRML_LAYER* vl; if( !GetLayer( aModel, zone->GetLayer(), &vl ) ) continue; if( !zone->IsFilled() ) { zone->SetFillMode( 0 ); // use filled polygons zone->BuildFilledSolidAreasPolygons( aPcb ); } const CPOLYGONS_LIST& poly = zone->GetFilledPolysList(); int nvert = poly.GetCornersCount(); int i = 0; while( i < nvert ) { int seg = vl->NewContour(); bool first = true; if( seg < 0 ) break; while( i < nvert ) { x = poly.GetX(i) * scale; y = -(poly.GetY(i) * scale); if( poly.IsEndContour(i) ) break; if( !vl->AddVertex( seg, x, y ) ) throw( std::runtime_error( vl->GetError() ) ); ++i; } // KiCad ensures that the first polygon is the outline // and all others are holes vl->EnsureWinding( seg, first ? false : true ); if( first ) first = false; ++i; } } } static void export_vrml_text_module( TEXTE_MODULE* module ) { if( module->IsVisible() ) { wxSize size = module->GetSize(); if( module->IsMirrored() ) NEGATE( size.x ); // Text is mirrored model_vrml->s_text_layer = module->GetLayer(); model_vrml->s_text_width = module->GetThickness(); DrawGraphicText( NULL, NULL, module->GetTextPosition(), BLACK, module->GetShownText(), module->GetDrawRotation(), size, module->GetHorizJustify(), module->GetVertJustify(), module->GetThickness(), module->IsItalic(), true, vrml_text_callback ); } } static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline, double aOrientation ) { LAYER_NUM layer = aOutline->GetLayer(); double x = aOutline->GetStart().x * aModel.scale; double y = aOutline->GetStart().y * aModel.scale; double xf = aOutline->GetEnd().x * aModel.scale; double yf = aOutline->GetEnd().y * aModel.scale; double w = aOutline->GetWidth() * aModel.scale; switch( aOutline->GetShape() ) { case S_SEGMENT: export_vrml_line( aModel, layer, x, y, xf, yf, w ); break; case S_ARC: export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 ); break; case S_CIRCLE: export_vrml_circle( aModel, layer, x, y, xf, yf, w ); break; case S_POLYGON: { VRML_LAYER* vl; if( !GetLayer( aModel, layer, &vl ) ) break; int nvert = aOutline->GetPolyPoints().size() - 1; int i = 0; if( nvert < 3 ) break; int seg = vl->NewContour(); if( seg < 0 ) break; while( i < nvert ) { CPolyPt corner( aOutline->GetPolyPoints()[i] ); RotatePoint( &corner.x, &corner.y, aOrientation ); corner.x += aOutline->GetPosition().x; corner.y += aOutline->GetPosition().y; x = corner.x * aModel.scale; y = - ( corner.y * aModel.scale ); if( !vl->AddVertex( seg, x, y ) ) throw( std::runtime_error( vl->GetError() ) ); ++i; } vl->EnsureWinding( seg, false ); } break; default: break; } } static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aTinLayer, D_PAD* aPad ) { // The (maybe offset) pad position wxPoint pad_pos = aPad->ShapePos(); double pad_x = pad_pos.x * aModel.scale; double pad_y = pad_pos.y * aModel.scale; wxSize pad_delta = aPad->GetDelta(); double pad_dx = pad_delta.x * aModel.scale / 2.0; double pad_dy = pad_delta.y * aModel.scale / 2.0; double pad_w = aPad->GetSize().x * aModel.scale / 2.0; double pad_h = aPad->GetSize().y * aModel.scale / 2.0; switch( aPad->GetShape() ) { case PAD_CIRCLE: if( !aTinLayer->AddCircle( pad_x, -pad_y, pad_w, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; case PAD_OVAL: if( !aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0, aPad->GetOrientation()/10.0, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; case PAD_RECT: // Just to be sure :D pad_dx = 0; pad_dy = 0; case PAD_TRAPEZOID: { double coord[8] = { -pad_w + pad_dy, -pad_h - pad_dx, -pad_w - pad_dy, pad_h + pad_dx, +pad_w - pad_dy, -pad_h + pad_dx, +pad_w + pad_dy, pad_h - pad_dx }; for( int i = 0; i < 4; i++ ) { RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() ); coord[i * 2] += pad_x; coord[i * 2 + 1] += pad_y; } int lines; lines = aTinLayer->NewContour(); if( lines < 0 ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[0], -coord[1] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[4], -coord[5] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[6], -coord[7] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->AddVertex( lines, coord[2], -coord[3] ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); if( !aTinLayer->EnsureWinding( lines, false ) ) throw( std::runtime_error( aTinLayer->GetError() ) ); break; } default: break; } } static void export_vrml_pad( MODEL_VRML& aModel, BOARD* pcb, D_PAD* aPad ) { double hole_drill_w = (double) aPad->GetDrillSize().x * aModel.scale / 2.0; double hole_drill_h = (double) aPad->GetDrillSize().y * aModel.scale / 2.0; double hole_drill = std::min( hole_drill_w, hole_drill_h ); double hole_x = aPad->GetPosition().x * aModel.scale; double hole_y = aPad->GetPosition().y * aModel.scale; // Export the hole on the edge layer if( hole_drill > 0 ) { bool pth = false; if( aPad->GetAttribute() != PAD_HOLE_NOT_PLATED ) pth = true; if( aPad->GetDrillShape() == PAD_DRILL_OBLONG ) { // Oblong hole (slot) aModel.holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0, aPad->GetOrientation()/10.0, true, pth ); if( pth ) aModel.plated_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0, aPad->GetOrientation()/10.0, true, false ); } else { // Drill a round hole aModel.holes.AddCircle( hole_x, -hole_y, hole_drill, true, pth ); if( pth ) aModel.plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false ); } } // The pad proper, on the selected layers LSET layer_mask = aPad->GetLayerSet(); if( layer_mask[B_Cu] ) { export_vrml_padshape( aModel, &aModel.bot_tin, aPad ); } if( layer_mask[F_Cu] ) { export_vrml_padshape( aModel, &aModel.top_tin, aPad ); } } // From axis/rot to quaternion static void build_quat( double x, double y, double z, double a, double q[4] ) { double sina = sin( a / 2 ); q[0] = x * sina; q[1] = y * sina; q[2] = z * sina; q[3] = cos( a / 2 ); } // From quaternion to axis/rot static void from_quat( double q[4], double rot[4] ) { rot[3] = acos( q[3] ) * 2; for( int i = 0; i < 3; i++ ) { rot[i] = q[i] / sin( rot[3] / 2 ); } } // Quaternion composition static void compose_quat( double q1[4], double q2[4], double qr[4] ) { double tmp[4]; tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1]; tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2]; tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0]; tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2]; qr[0] = tmp[0]; qr[1] = tmp[1]; qr[2] = tmp[2]; qr[3] = tmp[3]; } static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb, MODULE* aModule, std::ofstream& aOutputFile, double aVRMLModelsToBiu, bool aExport3DFiles, bool aUseRelativePaths, const wxString& a3D_Subdir ) { // Reference and value if( aModule->Reference().IsVisible() ) export_vrml_text_module( &aModule->Reference() ); if( aModule->Value().IsVisible() ) export_vrml_text_module( &aModule->Value() ); // Export module edges for( EDA_ITEM* item = aModule->GraphicalItems(); item; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: export_vrml_text_module( static_cast( item ) ); break; case PCB_MODULE_EDGE_T: export_vrml_edge_module( aModel, static_cast( item ), aModule->GetOrientation() ); break; default: break; } } // Export pads for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() ) export_vrml_pad( aModel, aPcb, pad ); bool isFlipped = aModule->GetLayer() == B_Cu; // Export the object VRML model(s) for( S3D_MASTER* vrmlm = aModule->Models(); vrmlm; vrmlm = vrmlm->Next() ) { if( !vrmlm->Is3DType( S3D_MASTER::FILE3D_VRML ) ) continue; wxFileName modelFileName = vrmlm->GetShape3DFullFilename(); wxFileName destFileName( a3D_Subdir, modelFileName.GetName(), modelFileName.GetExt() ); // Only copy VRML files. if( modelFileName.FileExists() && modelFileName.GetExt() == wxT( "wrl" ) ) { if( aExport3DFiles ) { wxDateTime srcModTime = modelFileName.GetModificationTime(); wxDateTime destModTime = srcModTime; destModTime.SetToCurrent(); if( destFileName.FileExists() ) destModTime = destFileName.GetModificationTime(); // Only copy the file if it doesn't exist or has been modified. This eliminates // the redundant file copies. if( srcModTime != destModTime ) { wxLogDebug( wxT( "Copying 3D model %s to %s." ), GetChars( modelFileName.GetFullPath() ), GetChars( destFileName.GetFullPath() ) ); if( !wxCopyFile( modelFileName.GetFullPath(), destFileName.GetFullPath() ) ) continue; } } /* Calculate 3D shape rotation: * this is the rotation parameters, with an additional 180 deg rotation * for footprints that are flipped * When flipped, axis rotation is the horizontal axis (X axis) */ double rotx = -vrmlm->m_MatRotation.x; double roty = -vrmlm->m_MatRotation.y; double rotz = -vrmlm->m_MatRotation.z; if( isFlipped ) { rotx += 180.0; NEGATE( roty ); NEGATE( rotz ); } // Do some quaternion munching double q1[4], q2[4], rot[4]; build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 ); build_quat( 0, 1, 0, DEG2RAD( roty ), q2 ); compose_quat( q1, q2, q1 ); build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 ); compose_quat( q1, q2, q1 ); // Note here aModule->GetOrientation() is in 0.1 degrees, // so module rotation has to be converted to radians build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 ); compose_quat( q1, q2, q1 ); from_quat( q1, rot ); aOutputFile << "Transform {\n"; // A null rotation would fail the acos! if( rot[3] != 0.0 ) { aOutputFile << " rotation " << std::setprecision( 3 ); aOutputFile << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n"; } // adjust 3D shape local offset position // they are given in inch, so they are converted in board IU. double offsetx = vrmlm->m_MatPosition.x * IU_PER_MILS * 1000.0; double offsety = vrmlm->m_MatPosition.y * IU_PER_MILS * 1000.0; double offsetz = vrmlm->m_MatPosition.z * IU_PER_MILS * 1000.0; if( isFlipped ) NEGATE( offsetz ); else // In normal mode, Y axis is reversed in Pcbnew. NEGATE( offsety ); RotatePoint( &offsetx, &offsety, aModule->GetOrientation() ); aOutputFile << " translation " << std::setprecision( aModel.precision ); aOutputFile << ( ( offsetx + aModule->GetPosition().x ) * aModel.scale + aModel.tx ) << " "; aOutputFile << ( -(offsety + aModule->GetPosition().y) * aModel.scale - aModel.ty ) << " "; aOutputFile << ( (offsetz * aModel.scale ) + aModel.GetLayerZ( aModule->GetLayer() ) ) << "\n"; aOutputFile << " scale "; aOutputFile << ( vrmlm->m_MatScale.x * aVRMLModelsToBiu ) << " "; aOutputFile << ( vrmlm->m_MatScale.y * aVRMLModelsToBiu ) << " "; aOutputFile << ( vrmlm->m_MatScale.z * aVRMLModelsToBiu ) << "\n"; aOutputFile << " children [\n Inline {\n url \""; if( aUseRelativePaths ) { wxFileName tmp = destFileName; tmp.SetExt( wxT( "" ) ); tmp.SetName( wxT( "" ) ); tmp.RemoveLastDir(); destFileName.MakeRelativeTo( tmp.GetPath() ); } wxString fn = destFileName.GetFullPath(); fn.Replace( wxT( "\\" ), wxT( "/" ) ); aOutputFile << TO_UTF8( fn ) << "\"\n } ]\n"; aOutputFile << " }\n"; } } } bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit, bool aExport3DFiles, bool aUseRelativePaths, const wxString& a3D_Subdir ) { wxString msg; BOARD* pcb = GetBoard(); bool ok = true; MODEL_VRML model3d; model_vrml = &model3d; std::ofstream output_file; try { output_file.exceptions( std::ofstream::failbit ); output_file.open( TO_UTF8( aFullFileName ), std::ios_base::out ); // Switch the locale to standard C (needed to print floating point numbers like 1.3) SetLocaleTo_C_standard(); // Begin with the usual VRML boilerplate wxString fn = aFullFileName; fn.Replace( wxT( "\\" ), wxT( "/" ) ); output_file << "#VRML V2.0 utf8\n"; output_file << "WorldInfo {\n"; output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n"; output_file << "}\n"; // Set the VRML world scale factor model3d.SetScale( aMMtoWRMLunit ); output_file << "Transform {\n"; // compute the offset to center the board on (0, 0, 0) // XXX - NOTE: we should allow the user a GUI option to specify the offset EDA_RECT bbbox = pcb->ComputeBoundingBox(); model3d.SetOffset( -model3d.scale * bbbox.Centre().x, model3d.scale * bbbox.Centre().y ); output_file << " children [\n"; // Preliminary computation: the z value for each layer compute_layer_Zs( model3d, pcb ); // board edges and cutouts export_vrml_board( model3d, pcb ); // Drawing and text on the board export_vrml_drawings( model3d, pcb ); // Export vias and trackage export_vrml_tracks( model3d, pcb ); // Export zone fills export_vrml_zones( model3d, pcb); /* scaling factor to convert 3D models to board units (decimils) * Usually we use Wings3D to create thems. * One can consider the 3D units is 0.1 inch (2.54 mm) * So the scaling factor from 0.1 inch to board units * is 2.54 * aMMtoWRMLunit */ double wrml_3D_models_scaling_factor = 2.54 * aMMtoWRMLunit; // Export footprints for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() ) export_vrml_module( model3d, pcb, module, output_file, wrml_3D_models_scaling_factor, aExport3DFiles, aUseRelativePaths, a3D_Subdir ); // write out the board and all layers write_layers( model3d, output_file, pcb ); // Close the outer 'transform' node output_file << "]\n}\n"; } catch( const std::exception& e ) { wxString msg; msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() ); wxMessageBox( msg ); ok = false; } // End of work output_file.exceptions( std::ios_base::goodbit ); output_file.close(); SetLocaleTo_Default(); // revert to the current locale return ok; }