/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 1992-2010 jean-pierre.charras * Copyright (C) 1992-2010 Kicad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "kbool/booleng.h" #include #include #include #include #include #include #include "potracelib.h" //#include "bitmap_io.h" #include "auxiliary.h" #ifndef max #define max( a, b ) ( ( (a) > (b) ) ? (a) : (b) ) #endif #ifndef min #define min( a, b ) ( ( (a) < (b) ) ? (a) : (b) ) #endif enum output_format { POSTSCRIPT_FMT = 1, PCBNEW_FMT, EESCHEMA_FMT }; /* free a potrace bitmap */ static void bm_free(potrace_bitmap_t *bm) { if (bm != NULL) { free(bm->map); } free(bm); } /* Helper class th handle useful info to convert a bitmpa to * a polygonal object description */ class BITMAPCONV_INFO { public: enum output_format m_Format; int m_PixmapWidth; int m_PixmapHeight; // the bitmap size in pixels double m_ScaleX; double m_ScaleY; // the conversion scale potrace_path_t* m_Paths; // the list of paths, from potrace (list of lines and bezier curves) FILE* m_Outfile; public: BITMAPCONV_INFO(); }; static void BezierToPolyline( std::vector & aCornersBuffer, potrace_dpoint_t p1, potrace_dpoint_t p2, potrace_dpoint_t p3, potrace_dpoint_t p4 ); static void CreateOutputFile( BITMAPCONV_INFO& aInfo ); static const char* CmpName = "LOGO"; BITMAPCONV_INFO::BITMAPCONV_INFO() { m_Format = POSTSCRIPT_FMT; m_PixmapWidth = 0; m_PixmapHeight = 0; m_ScaleX = 1.0; m_ScaleY = 1.0; m_Paths = NULL; m_Outfile = NULL; } /** Function ArmBoolEng * Initialise parameters used in kbool * @param aBooleng = pointer to the Bool_Engine to initialise * @param aConvertHoles = mode for holes when a boolean operation is made * true: in resulting polygon, holes are linked into outer contours by double overlapping segments * false: in resulting polygons, holes are not linked: they are separate polygons */ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles ) { // set some global vals to arm the boolean engine // input points are scaled up with GetDGrid() * GetGrid() // DGRID is only meant to make fractional parts of input data which /* * The input data scaled up with DGrid is related to the accuracy the user has in his input data. * User data with a minimum accuracy of 0.001, means set the DGrid to 1000. * The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid * everything smaller than 1/DGrid is rounded. * * DGRID is only meant to make fractional parts of input data which can be * doubles, part of the integers used in vertexes within the boolean algorithm. * And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy. * Within the algorithm all input data is multiplied with DGRID, and the result * is rounded to an integer. */ double DGRID = 1000.0; // round coordinate X or Y value in calculations to this (initial value = 1000.0 in kbool example) // kbool uses DGRID to convert float user units to integer // kbool unit = (int)(user unit * DGRID) // Note: in kicad, coordinates are already integer so DGRID could be set to 1 // we can choose 1.0, // but choose DGRID = 1000.0 solves some filling problems // (perhaps because this allows a better precision in kbool internal calculations double MARGE = 1.0 / DGRID; // snap with in this range points to lines in the intersection routines // should always be >= 1/DGRID a MARGE >= 10/DGRID is ok // this is also used to remove small segments and to decide when // two segments are in line. ( initial value = 0.001 ) // For kicad we choose MARGE = 1/DGRID double CORRECTIONFACTOR = 0.0; // correct the polygons by this number: used in BOOL_CORRECTION operation // this operation shrinks a polygon if CORRECTIONFACTOR < 0 // or stretch it if CORRECTIONFACTOR > 0 // the size change is CORRECTIONFACTOR (holes are correctly handled) double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle double SMOOTHABER = 10.0; // accuracy when smoothing a polygon double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen /* * Grid makes sure that the integer data used within the algorithm has room for extra intersections * smaller than the smallest number within the input data. * The input data scaled up with DGrid is related to the accuracy the user has in his input data. * Another scaling with Grid is applied on top of it to create space in the integer number for * even smaller numbers. */ int GRID = (int) 10000 / DGRID; // initial value = 10000 in kbool example // But we use 10000/DGRID because the scalling is made // by DGRID on integer pcbnew units and // the global scalling ( GRID*DGRID) must be < 30000 to avoid // overflow in calculations (made in long long in kbool) if( GRID <= 1 ) // Cannot be null! GRID = 1; aBooleng->SetMarge( MARGE ); aBooleng->SetGrid( GRID ); aBooleng->SetDGrid( DGRID ); aBooleng->SetCorrectionFactor( CORRECTIONFACTOR ); aBooleng->SetCorrectionAber( CORRECTIONABER ); aBooleng->SetSmoothAber( SMOOTHABER ); aBooleng->SetMaxlinemerge( MAXLINEMERGE ); aBooleng->SetRoundfactor( ROUNDFACTOR ); aBooleng->SetWindingRule( true ); // This is the default kbool value if( aConvertHoles ) { #if 1 // Can be set to 1 for kbool version >= 2.1, must be set to 0 for previous versions // SetAllowNonTopHoleLinking() exists only in kbool >= 2.1 aBooleng->SetAllowNonTopHoleLinking( false ); // Default = , but i have problems (filling errors) when true #endif aBooleng->SetLinkHoles( true ); // holes will be connected by double overlapping segments aBooleng->SetOrientationEntryMode( false ); // all polygons are contours, not holes } else { aBooleng->SetLinkHoles( false ); // holes will not be connected by double overlapping segments aBooleng->SetOrientationEntryMode( true ); // holes are entered counter clockwise } } int bitmap2component( potrace_bitmap_t* aPotrace_bitmap, FILE * aOutfile, int aFormat ) { potrace_param_t* param; potrace_state_t* st; /* set tracing parameters, starting from defaults */ param = potrace_param_default(); if( !param ) { fprintf( stderr, "Error allocating parameters: %s\n", strerror( errno ) ); return 1; } param->turdsize = 0; /* convert the bitmap to curves */ st = potrace_trace( param, aPotrace_bitmap ); if( !st || st->status != POTRACE_STATUS_OK ) { fprintf( stderr, "Error tracing bitmap: %s\n", strerror( errno ) ); return 1; } BITMAPCONV_INFO info; info.m_PixmapWidth = aPotrace_bitmap->w; info.m_PixmapHeight = aPotrace_bitmap->h; // the bitmap size in pixels info.m_Paths = st->plist; info.m_Outfile = aOutfile; switch( aFormat ) { case 2: info.m_Format = POSTSCRIPT_FMT; info.m_ScaleX = info.m_ScaleY = 1.0; // the conversion scale /* output vector data, e.g. as a rudimentary EPS file */ CreateOutputFile( info ); break; case 1: info.m_Format = EESCHEMA_FMT; info.m_ScaleX = 1000.0 / 300; // the conversion scale info.m_ScaleY = - info.m_ScaleX; // Y axis is bottom to Top for components in libs CreateOutputFile( info ); break; case 0: info.m_Format = PCBNEW_FMT; info.m_ScaleX = 10000.0 / 300; // the conversion scale info.m_ScaleY = info.m_ScaleX; // Y axis is top to bottom in modedit CreateOutputFile( info ); break; default: break; } bm_free( aPotrace_bitmap ); potrace_state_free( st ); potrace_param_free( param ); return 0; } static void OuputHeader( BITMAPCONV_INFO& aInfo ) { int Ypos = (int) ( aInfo.m_PixmapHeight / 2 * aInfo.m_ScaleY ); int fieldSize; // fields text size = 60 mils switch( aInfo.m_Format ) { case POSTSCRIPT_FMT: /* output vector data, e.g. as a rudimentary EPS file */ fprintf( aInfo.m_Outfile, "%%!PS-Adobe-3.0 EPSF-3.0\n" ); fprintf( aInfo.m_Outfile, "%%%%BoundingBox: 0 0 %d %d\n", aInfo.m_PixmapWidth, aInfo.m_PixmapHeight ); fprintf( aInfo.m_Outfile, "gsave\n" ); break; case PCBNEW_FMT: #define FIELD_LAYER 21 fieldSize = 600; // fields text size = 60 mils Ypos += fieldSize / 2; fprintf( aInfo.m_Outfile, "PCBNEW-LibModule-V1\n" ); fprintf( aInfo.m_Outfile, "$INDEX\n%s\n$EndINDEX\n", CmpName ); fprintf( aInfo.m_Outfile, "#\n# %s\n", CmpName ); fprintf( aInfo.m_Outfile, "# pixmap w = %d, h = %d\n#\n", aInfo.m_PixmapWidth, aInfo.m_PixmapHeight ); fprintf( aInfo.m_Outfile, "$MODULE %s\n", CmpName ); fprintf( aInfo.m_Outfile, "Po 0 0 0 15 00000000 00000000 ~~\n"); fprintf( aInfo.m_Outfile, "T0 0 %d %d %d 0 %d N I %d \"G***\"\n", Ypos, fieldSize, fieldSize, fieldSize/5, FIELD_LAYER ); fprintf( aInfo.m_Outfile, "T1 0 %d %d %d 0 %d N I %d \"%s\"\n", -Ypos, fieldSize, fieldSize, fieldSize/5, FIELD_LAYER, CmpName ); break; case EESCHEMA_FMT: fprintf( aInfo.m_Outfile, "EESchema-LIBRARY Version 2.3\n" ); fprintf( aInfo.m_Outfile, "#\n# %s\n", CmpName ); fprintf( aInfo.m_Outfile, "# pixmap size w = %d, h = %d\n#\n", aInfo.m_PixmapWidth, aInfo.m_PixmapHeight ); // print reference and value fieldSize = 60; // fields text size = 60 mils Ypos += fieldSize / 2; fprintf( aInfo.m_Outfile, "DEF %s G 0 40 Y Y 1 F N\n", CmpName ); fprintf( aInfo.m_Outfile, "F0 \"#G\" 0 %d %d H I C CNN\n", Ypos, fieldSize ); fprintf( aInfo.m_Outfile, "F1 \"%s\" 0 %d %d H I C CNN\n", CmpName, -Ypos, fieldSize ); fprintf( aInfo.m_Outfile, "DRAW\n" ); break; } } static void OuputEnd( BITMAPCONV_INFO& aInfo ) { switch( aInfo.m_Format ) { case POSTSCRIPT_FMT: fprintf( aInfo.m_Outfile, "grestore\n" ); fprintf( aInfo.m_Outfile, "%%EOF\n" ); break; case PCBNEW_FMT: fprintf( aInfo.m_Outfile, "$EndMODULE %s\n", CmpName ); fprintf( aInfo.m_Outfile, "$EndLIBRARY\n" ); break; case EESCHEMA_FMT: fprintf( aInfo.m_Outfile, "ENDDRAW\n" ); fprintf( aInfo.m_Outfile, "ENDDEF\n" ); break; } } static void OuputOnePolygon( BITMAPCONV_INFO& aInfo, std::vector & aPolygonBuffer ) { unsigned ii; double offsetX = aInfo.m_PixmapWidth / 2 * aInfo.m_ScaleX; double offsetY = aInfo.m_PixmapHeight / 2 * aInfo.m_ScaleY; switch( aInfo.m_Format ) { case POSTSCRIPT_FMT: fprintf( aInfo.m_Outfile, "%f %f moveto\n", aPolygonBuffer[0].x * aInfo.m_ScaleX, aPolygonBuffer[0].y * aInfo.m_ScaleY ); for( ii = 1; ii < aPolygonBuffer.size(); ii++ ) fprintf( aInfo.m_Outfile, "%f %f lineto\n", aPolygonBuffer[ii].x * aInfo.m_ScaleX, aPolygonBuffer[ii].y * aInfo.m_ScaleY ); fprintf( aInfo.m_Outfile, "0 setgray fill\n" ); break; case PCBNEW_FMT: { #define SILKSCREEN_N_FRONT 21 int layer = SILKSCREEN_N_FRONT; int width = 1; fprintf( aInfo.m_Outfile, "DP %d %d %d %d %d %d %d\n", 0, 0, 0, 0, int(aPolygonBuffer.size()+1), width, layer ); for( ii = 0; ii < aPolygonBuffer.size(); ii++ ) fprintf( aInfo.m_Outfile, "Dl %d %d\n", (int) ( aPolygonBuffer[ii].x * aInfo.m_ScaleX - offsetX ), (int) ( aPolygonBuffer[ii].y * aInfo.m_ScaleY - offsetY ) ); // Close polygon fprintf( aInfo.m_Outfile, "Dl %d %d\n", (int) ( aPolygonBuffer[0].x * aInfo.m_ScaleX - offsetX ), (int) ( aPolygonBuffer[0].y * aInfo.m_ScaleY - offsetY ) ); } break; case EESCHEMA_FMT: fprintf( aInfo.m_Outfile, "P %d 0 0 1", int(aPolygonBuffer.size()+1) ); for( ii = 0; ii < aPolygonBuffer.size(); ii++ ) fprintf( aInfo.m_Outfile, " %d %d", (int) ( aPolygonBuffer[ii].x * aInfo.m_ScaleX - offsetX ), (int) ( aPolygonBuffer[ii].y * aInfo.m_ScaleY - offsetY ) ); // Close polygon fprintf( aInfo.m_Outfile, " %d %d", (int) ( aPolygonBuffer[0].x * aInfo.m_ScaleX - offsetX ), (int) ( aPolygonBuffer[0].y * aInfo.m_ScaleY - offsetY ) ); fprintf( aInfo.m_Outfile, " F\n" ); break; } } static void CreateOutputFile( BITMAPCONV_INFO& aInfo ) { unsigned int i, n; int* tag; std::vector cornersBuffer; potrace_dpoint_t( *c )[3]; OuputHeader( aInfo ); bool main_outline = true; Bool_Engine* booleng = NULL; /* draw each as a polygon with no hole. * Bezier curves are approximated by a polyline */ potrace_path_t* paths = aInfo.m_Paths; // the list of paths while( paths != NULL ) { n = paths->curve.n; tag = paths->curve.tag; c = paths->curve.c; potrace_dpoint_t startpoint = c[n - 1][2]; cornersBuffer.push_back( startpoint ); if( booleng == NULL ) { booleng = new Bool_Engine(); ArmBoolEng( booleng, true ); } for( i = 0; i < n; i++ ) { switch( tag[i] ) { case POTRACE_CORNER: cornersBuffer.push_back( c[i][1] ); cornersBuffer.push_back( c[i][2] ); startpoint = c[i][2]; break; case POTRACE_CURVETO: BezierToPolyline( cornersBuffer, startpoint, c[i][0], c[i][1], c[i][2] ); startpoint = c[i][2]; break; } } // Store current path if( main_outline ) { main_outline = false; booleng->StartPolygonAdd( GROUP_A ); for( i = 1; i < cornersBuffer.size(); i++ ) booleng->AddPoint( cornersBuffer[i].x, cornersBuffer[i].y ); booleng->EndPolygonAdd(); } else { booleng->StartPolygonAdd( GROUP_B ); for( i = 1; i < cornersBuffer.size(); i++ ) booleng->AddPoint( cornersBuffer[i].x, cornersBuffer[i].y ); booleng->EndPolygonAdd(); } cornersBuffer.clear(); /* at the end of a group of a positive path and its negative * children, fill. */ if( paths->next == NULL || paths->next->sign == '+' ) { booleng->Do_Operation( BOOL_A_SUB_B ); std::vector PolygonBuffer; while( booleng->StartPolygonGet() ) { potrace_dpoint_t corner; PolygonBuffer.clear(); while( booleng->PolygonHasMorePoints() ) { corner.x = booleng->GetPolygonXPoint(); corner.y = booleng->GetPolygonYPoint(); PolygonBuffer.push_back( corner ); } booleng->EndPolygonGet(); OuputOnePolygon( aInfo, PolygonBuffer ); PolygonBuffer.clear(); } delete booleng; booleng = NULL; main_outline = true; } paths = paths->next; } OuputEnd( aInfo ); } /* render a Bezier curve. */ void BezierToPolyline( std::vector & aCornersBuffer, potrace_dpoint_t p1, potrace_dpoint_t p2, potrace_dpoint_t p3, potrace_dpoint_t p4 ) { double dd0, dd1, dd, delta, e2, epsilon, t; // p1 = starting point /* we approximate the curve by small line segments. The interval * size, epsilon, is determined on the fly so that the distance * between the true curve and its approximation does not exceed the * desired accuracy delta. */ delta = 0.5; /* desired accuracy, in pixels */ /* let dd = maximal value of 2nd derivative over curve - this must * occur at an endpoint. */ dd0 = sq( p1.x - 2 * p2.x + p3.x ) + sq( p1.y - 2 * p2.y + p3.y ); dd1 = sq( p2.x - 2 * p3.x + p4.x ) + sq( p2.y - 2 * p3.y + p4.y ); dd = 6 * sqrt( max( dd0, dd1 ) ); e2 = 8 * delta <= dd ? 8 * delta / dd : 1; epsilon = sqrt( e2 ); /* necessary interval size */ for( t = epsilon; t<1; t += epsilon ) { potrace_dpoint_t intermediate_point; intermediate_point.x = p1.x * cu( 1 - t ) + 3* p2.x* sq( 1 - t ) * t + 3 * p3.x * (1 - t) * sq( t ) + p4.x* cu( t ); intermediate_point.y = p1.y * cu( 1 - t ) + 3* p2.y* sq( 1 - t ) * t + 3 * p3.y * (1 - t) * sq( t ) + p4.y* cu( t ); aCornersBuffer.push_back( intermediate_point ); } aCornersBuffer.push_back( p4 ); }