/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2019 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zone_filler.h" #include // To be removed later, when the zone fill option will be always allowed class PROGRESS_REPORTER_HIDER { public: PROGRESS_REPORTER_HIDER( WX_PROGRESS_REPORTER* aReporter ) { m_reporter = aReporter; if( aReporter ) aReporter->Hide(); } ~PROGRESS_REPORTER_HIDER() { if( m_reporter ) m_reporter->Show(); } private: WX_PROGRESS_REPORTER* m_reporter; }; static const double s_RoundPadThermalSpokeAngle = 450; static const bool s_DumpZonesWhenFilling = false; ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ) { } ZONE_FILLER::~ZONE_FILLER() { } void ZONE_FILLER::InstallNewProgressReporter( wxWindow* aParent, const wxString& aTitle, int aNumPhases ) { m_uniqueReporter = std::make_unique( aParent, aTitle, aNumPhases ); m_progressReporter = m_uniqueReporter.get(); } bool ZONE_FILLER::Fill( const std::vector& aZones, bool aCheck ) { std::vector toFill; auto connectivity = m_board->GetConnectivity(); bool filledPolyWithOutline = not m_board->GetDesignSettings().m_ZoneUseNoOutlineInFill; std::unique_lock lock( connectivity->GetLock(), std::try_to_lock ); if( !lock ) return false; if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); } // The board outlines is used to clip solid areas inside the board (when outlines are valid) m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline ); for( auto zone : aZones ) { // Keepout zones are not filled if( zone->GetIsKeepout() ) continue; if( m_commit ) m_commit->Modify( zone ); // calculate the hash value for filled areas. it will be used later // to know if the current filled areas are up to date zone->BuildHashValue(); // Add the zone to the list of zones to test or refill toFill.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST(zone) ); // Remove existing fill first to prevent drawing invalid polygons // on some platforms zone->UnFill(); } std::atomic nextItem( 0 ); size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), aZones.size() ); std::vector> returns( parallelThreadCount ); auto fill_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0; for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { ZONE_CONTAINER* zone = toFill[i].m_zone; zone->SetFilledPolysUseThickness( filledPolyWithOutline ); SHAPE_POLY_SET rawPolys, finalPolys; fillSingleZone( zone, rawPolys, finalPolys ); zone->SetRawPolysList( rawPolys ); zone->SetFilledPolysList( finalPolys ); zone->SetIsFilled( true ); if( m_progressReporter ) m_progressReporter->AdvanceProgress(); num++; } return num; }; if( parallelThreadCount <= 1 ) fill_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } // Now update the connectivity to check for copper islands if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing insulated copper islands..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( toFill ); // Now remove insulated copper islands and islands outside the board edge bool outOfDate = false; for( auto& zone : toFill ) { std::sort( zone.m_islands.begin(), zone.m_islands.end(), std::greater() ); SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList(); // Remove solid areas outside the board cutouts and the insulated islands // only zones with net code > 0 can have insulated islands by definition if( zone.m_zone->GetNetCode() > 0 ) { // solid areas outside the board cutouts are also removed, because they are usually // insulated islands for( auto idx : zone.m_islands ) { poly.DeletePolygon( idx ); } } // Zones with no net can have areas outside the board cutouts. // By definition, Zones with no net have no isolated island // (in fact all filled areas are isolated islands) // but they can have some areas outside the board cutouts. // A filled area outside the board cutouts has all points outside cutouts, // so we only need to check one point for each filled polygon. // Note also non copper zones are already clipped else if( m_brdOutlinesValid && zone.m_zone->IsOnCopperLayer() ) { for( int idx = 0; idx < poly.OutlineCount(); ) { if( poly.Polygon( idx ).empty() || !m_boardOutline.Contains( poly.Polygon( idx ).front().CPoint( 0 ) ) ) { poly.DeletePolygon( idx ); } else idx++; } } zone.m_zone->SetFilledPolysList( poly ); if( aCheck && zone.m_zone->GetHashValue() != poly.GetHash() ) outOfDate = true; } if( aCheck && outOfDate ) { PROGRESS_REPORTER_HIDER raii( m_progressReporter ); KIDIALOG dlg( m_progressReporter->GetParent(), _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); if( dlg.ShowModal() == wxID_CANCEL ) { if( m_commit ) m_commit->Revert(); connectivity->SetProgressReporter( nullptr ); return false; } } if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Performing polygon fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); } nextItem = 0; auto tri_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0; for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { toFill[i].m_zone->CacheTriangulation(); num++; if( m_progressReporter ) m_progressReporter->AdvanceProgress(); } return num; }; if( parallelThreadCount <= 1 ) tri_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Committing changes..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( nullptr ); if( m_commit ) { m_commit->Push( _( "Fill Zone(s)" ), false ); } else { for( auto& i : toFill ) connectivity->Update( i.m_zone ); connectivity->RecalculateRatsnest(); } return true; } /** * Return true if the given pad has a thermal connection with the given zone. */ bool hasThermalConnection( D_PAD* pad, const ZONE_CONTAINER* aZone ) { // Rejects non-standard pads with tht-only thermal reliefs if( aZone->GetPadConnection( pad ) == ZONE_CONNECTION::THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_STANDARD ) { return false; } if( aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THERMAL && aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THT_THERMAL ) { return false; } if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 ) return false; EDA_RECT item_boundingbox = pad->GetBoundingBox(); int thermalGap = aZone->GetThermalReliefGap( pad ); item_boundingbox.Inflate( thermalGap, thermalGap ); return item_boundingbox.Intersects( aZone->GetBoundingBox() ); } /** * Setup aDummyPad to have the same size and shape of aPad's hole. This allows us to create * thermal reliefs and clearances for holes using the pad code. */ static void setupDummyPadForHole( const D_PAD* aPad, D_PAD& aDummyPad ) { aDummyPad.SetNetCode( aPad->GetNetCode() ); aDummyPad.SetSize( aPad->GetDrillSize() ); aDummyPad.SetOrientation( aPad->GetOrientation() ); aDummyPad.SetShape( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); aDummyPad.SetPosition( aPad->GetPosition() ); } /** * Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */ void ZONE_FILLER::addKnockout( D_PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles ) { if( aPad->GetShape() == PAD_SHAPE_CUSTOM ) { // the pad shape in zone can be its convex hull or the shape itself SHAPE_POLY_SET outline( aPad->GetCustomShapeAsPolygon() ); int numSegs = std::max( GetArcToSegmentCount( aGap, m_high_def, 360.0 ), 6 ); double correction = GetCircletoPolyCorrectionFactor( numSegs ); outline.Inflate( KiROUND( aGap * correction ), numSegs ); aPad->CustomShapeAsPolygonToBoardPosition( &outline, aPad->GetPosition(), aPad->GetOrientation() ); if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector convex_hull; BuildConvexHull( convex_hull, outline ); aHoles.NewOutline(); for( const wxPoint& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( outline ); } else { // Optimizing polygon vertex count: the high definition is used for round // and oval pads (pads with large arcs) but low def for other shapes (with // small arcs) if( aPad->GetShape() == PAD_SHAPE_CIRCLE || aPad->GetShape() == PAD_SHAPE_OVAL || ( aPad->GetShape() == PAD_SHAPE_ROUNDRECT && aPad->GetRoundRectRadiusRatio() > 0.4 ) ) aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def ); else aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_low_def ); } } /** * Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */ void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ) { switch( aItem->Type() ) { case PCB_LINE_T: { DRAWSEGMENT* seg = (DRAWSEGMENT*) aItem; seg->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth ); break; } case PCB_TEXT_T: { TEXTE_PCB* text = (TEXTE_PCB*) aItem; text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap ); break; } case PCB_MODULE_EDGE_T: { EDGE_MODULE* edge = (EDGE_MODULE*) aItem; edge->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth ); break; } case PCB_MODULE_TEXT_T: { TEXTE_MODULE* text = (TEXTE_MODULE*) aItem; if( text->IsVisible() ) text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap ); break; } default: break; } } /** * Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */ void ZONE_FILLER::knockoutThermalReliefs( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill ) { SHAPE_POLY_SET holes; // Use a dummy pad to calculate relief when a pad has a hole but is not on the zone's // copper layer. The dummy pad has the size and shape of the original pad's hole. We have // to give it a parent because some functions expect a non-null parent to find clearance // data, etc. MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule ); for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue; // If the pad isn't on the current layer but has a hole, knock out a thermal relief // for the hole. if( !pad->IsOnLayer( aZone->GetLayer() ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue; setupDummyPadForHole( pad, dummypad ); pad = &dummypad; } addKnockout( pad, aZone->GetThermalReliefGap( pad ), holes ); } } holes.Simplify( SHAPE_POLY_SET::PM_FAST ); aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST ); } /** * Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */ void ZONE_FILLER::buildCopperItemClearances( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aHoles ) { int zone_clearance = aZone->GetClearance(); int edgeClearance = m_board->GetDesignSettings().m_CopperEdgeClearance; int zone_to_edgecut_clearance = std::max( aZone->GetZoneClearance(), edgeClearance ); // items outside the zone bounding box are skipped // the bounding box is the zone bounding box + the biggest clearance found in Netclass list EDA_RECT zone_boundingbox = aZone->GetBoundingBox(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zone_boundingbox.Inflate( biggest_clearance ); // Use a dummy pad to calculate hole clearance when a pad has a hole but is not on the // zone's copper layer. The dummy pad has the size and shape of the original pad's hole. // We have to give it a parent because some functions expect a non-null parent to find // clearance data, etc. MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule ); // Add non-connected pad clearances // for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !pad->IsOnLayer( aZone->GetLayer() ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue; setupDummyPadForHole( pad, dummypad ); pad = &dummypad; } if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 || aZone->GetPadConnection( pad ) == ZONE_CONNECTION::NONE ) { int gap = std::max( zone_clearance, pad->GetClearance() ); EDA_RECT item_boundingbox = pad->GetBoundingBox(); item_boundingbox.Inflate( pad->GetClearance() ); if( item_boundingbox.Intersects( zone_boundingbox ) ) addKnockout( pad, gap, aHoles ); } } } // Add non-connected track clearances // for( auto track : m_board->Tracks() ) { if( !track->IsOnLayer( aZone->GetLayer() ) ) continue; if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) ) continue; int gap = std::max( zone_clearance, track->GetClearance() ); EDA_RECT item_boundingbox = track->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) track->TransformShapeWithClearanceToPolygon( aHoles, gap, m_low_def ); } // Add graphic item clearances. They are by definition unconnected, and have no clearance // definitions of their own. // auto doGraphicItem = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts is always seen as on any layer: if( !aItem->IsOnLayer( aZone->GetLayer() ) && !aItem->IsOnLayer( Edge_Cuts ) ) return; if( !aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) return; bool ignoreLineWidth = false; int gap = zone_clearance; if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = zone_to_edgecut_clearance; // edge cuts by definition don't have a width ignoreLineWidth = true; } addKnockout( aItem, gap, ignoreLineWidth, aHoles ); }; for( auto module : m_board->Modules() ) { doGraphicItem( &module->Reference() ); doGraphicItem( &module->Value() ); for( auto item : module->GraphicalItems() ) doGraphicItem( item ); } for( auto item : m_board->Drawings() ) doGraphicItem( item ); // Add zones outlines having an higher priority and keepout // for( ZONE_CONTAINER* zone : m_board->GetZoneList( true ) ) { // If the zones share no common layers if( !aZone->CommonLayerExists( zone->GetLayerSet() ) ) continue; if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() ) continue; if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() ) continue; // A higher priority zone or keepout area is found: remove this area EDA_RECT item_boundingbox = zone->GetBoundingBox(); if( !item_boundingbox.Intersects( zone_boundingbox ) ) continue; // Add the zone outline area. Don't use any clearance for keepouts, or for zones with // the same net (they will be connected but will honor their own clearance, thermal // connections, etc.). bool sameNet = aZone->GetNetCode() == zone->GetNetCode(); bool useNetClearance = true; int minClearance = zone_clearance; // The final clearance is obviously the max value of each zone clearance minClearance = std::max( minClearance, zone->GetClearance() ); if( zone->GetIsKeepout() || sameNet ) { minClearance = 0; useNetClearance = false; } zone->TransformOutlinesShapeWithClearanceToPolygon( aHoles, minClearance, useNetClearance ); } aHoles.Simplify( SHAPE_POLY_SET::PM_FAST ); } /** * 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */ void ZONE_FILLER::computeRawFilledArea( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aSmoothedOutline, std::set* aPreserveCorners, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) { m_high_def = m_board->GetDesignSettings().m_MaxError; m_low_def = std::min( ARC_LOW_DEF, int( m_high_def*1.5 ) ); // Reasonable value // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 ); SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::CHOP_ACUTE_CORNERS; if( aZone->GetCornerSmoothingType() == ZONE_SETTINGS::SMOOTHING_FILLET ) cornerStrategy = SHAPE_POLY_SET::ROUND_ACUTE_CORNERS; std::deque thermalSpokes; SHAPE_POLY_SET clearanceHoles; std::unique_ptr dumper( new SHAPE_FILE_IO( s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) ); aRawPolys = aSmoothedOutline; if( s_DumpZonesWhenFilling ) dumper->BeginGroup( "clipper-zone" ); knockoutThermalReliefs( aZone, aRawPolys ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-minus-thermal-reliefs" ); buildCopperItemClearances( aZone, clearanceHoles ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "clearance holes" ); buildThermalSpokes( aZone, thermalSpokes ); // Create a temporary zone that we can hit-test spoke-ends against. It's only temporary // because the "real" subtract-clearance-holes has to be done after the spokes are added. static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aRawPolys; testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); // Prune features that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, numSegs, cornerStrategy ); testAreas.Inflate( half_min_width - epsilon, numSegs, cornerStrategy ); } // Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed // things up a bit. testAreas.BuildBBoxCaches(); for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 ); // Hit-test against zone body if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); continue; } // Hit-test against other spokes for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); break; } } } // Ensure previous changes (adding thermal stubs) do not add // filled areas outside the zone boundary aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST ); aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-with-thermal-spokes" ); aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); // Prune features that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) aRawPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-before-hatching" ); // Now remove the non filled areas due to the hatch pattern if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, aRawPolys ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-after-hatching" ); // Re-inflate after pruning of areas that don't meet minimum-width criteria if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally // inflate the zone by half_min_width } else if( half_min_width - epsilon > epsilon ) { aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST ); aRawPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy ); // If we've deflated/inflated by something near our corner radius then we will have // ended up with too-sharp corners. Apply outline smoothing again. if( aZone->GetMinThickness() > (int)aZone->GetCornerRadius() ) aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST ); } aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST ); if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "areas_fractured" ); aFinalPolys = aRawPolys; if( s_DumpZonesWhenFilling ) dumper->EndGroup(); } /* * Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */ bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) { SHAPE_POLY_SET smoothedPoly; std::set colinearCorners; aZone->GetColinearCorners( m_board, colinearCorners ); /* * convert outlines + holes to outlines without holes (adding extra segments if necessary) * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building * this zone */ if ( !aZone->BuildSmoothedPoly( smoothedPoly, &colinearCorners ) ) return false; if( aZone->IsOnCopperLayer() ) { computeRawFilledArea( aZone, smoothedPoly, &colinearCorners, aRawPolys, aFinalPolys ); } else { // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 ); if( m_brdOutlinesValid ) smoothedPoly.BooleanIntersection( m_boardOutline, SHAPE_POLY_SET::PM_FAST ); smoothedPoly.Deflate( half_min_width - epsilon, numSegs ); // Remove the non filled areas due to the hatch pattern if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, smoothedPoly ); // Re-inflate after pruning of areas that don't meet minimum-width criteria if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally // inflate the zone by half_min_width } else if( half_min_width - epsilon > epsilon ) smoothedPoly.Deflate( -( half_min_width - epsilon ), numSegs ); aRawPolys = smoothedPoly; aFinalPolys = smoothedPoly; aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } aZone->SetNeedRefill( false ); return true; } /** * Function buildThermalSpokes */ void ZONE_FILLER::buildThermalSpokes( const ZONE_CONTAINER* aZone, std::deque& aSpokesList ) { auto zoneBB = aZone->GetBoundingBox(); int zone_clearance = aZone->GetZoneClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance ); // Is a point on the boundary of the polygon inside or outside? This small epsilon lets // us avoid the question. int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue; // We currently only connect to pads, not pad holes if( !pad->IsOnLayer( aZone->GetLayer() ) ) continue; int thermalReliefGap = aZone->GetThermalReliefGap( pad ); // Calculate thermal bridge half width int spoke_w = aZone->GetThermalReliefCopperBridge( pad ); // Avoid spoke_w bigger than the smaller pad size, because // it is not possible to create stubs bigger than the pad. // Possible refinement: have a separate size for vertical and horizontal stubs spoke_w = std::min( spoke_w, pad->GetSize().x ); spoke_w = std::min( spoke_w, pad->GetSize().y ); // Cannot create stubs having a width < zone min thickness if( spoke_w <= aZone->GetMinThickness() ) continue; int spoke_half_w = spoke_w / 2; // Quick test here to possibly save us some work BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon ); if( !( itemBB.Intersects( zoneBB ) ) ) continue; // Thermal spokes consist of segments from the pad center to points just outside // the thermal relief. // // We use the bounding-box to lay out the spokes, but for this to work the // bounding box has to be built at the same rotation as the spokes. wxPoint shapePos = pad->ShapePos(); wxPoint padPos = pad->GetPosition(); double padAngle = pad->GetOrientation(); pad->SetOrientation( 0.0 ); pad->SetPosition( { 0, 0 } ); BOX2I reliefBB = pad->GetBoundingBox(); pad->SetPosition( padPos ); pad->SetOrientation( padAngle ); reliefBB.Inflate( thermalReliefGap + epsilon ); // For circle pads, the thermal spoke orientation is 45 deg if( pad->GetShape() == PAD_SHAPE_CIRCLE ) padAngle = s_RoundPadThermalSpokeAngle; for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetBottom() ); spoke.Append( 0, reliefBB.GetBottom() ); // test pt spoke.Append( +spoke_half_w, reliefBB.GetBottom() ); break; case 1: // upper stub spoke.Append( +spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetTop() ); spoke.Append( 0, reliefBB.GetTop() ); // test pt spoke.Append( +spoke_half_w, reliefBB.GetTop() ); break; case 2: // right stub spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetRight(), -spoke_half_w ); spoke.Append( reliefBB.GetRight(), 0 ); // test pt spoke.Append( reliefBB.GetRight(), spoke_half_w ); break; case 3: // left stub spoke.Append( spoke_half_w, spoke_half_w ); spoke.Append( spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), 0 ); // test pt spoke.Append( reliefBB.GetLeft(), spoke_half_w ); break; } spoke.Rotate( -DECIDEG2RAD( padAngle ) ); spoke.Move( shapePos ); spoke.SetClosed( true ); spoke.GenerateBBoxCache(); aSpokesList.push_back( std::move( spoke ) ); } } } } void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys ) { // Build grid: // obviously line thickness must be > zone min thickness. // It can happens if a board file was edited by hand by a python script // Use 1 micron margin to be *sure* there is no issue in Gerber files // (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations // This margin also avoid problems due to rounding coordinates in next calculations // that can create incorrect polygons int thickness = std::max( aZone->GetHatchFillTypeThickness(), aZone->GetMinThickness()+Millimeter2iu( 0.001 ) ); int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchFillTypeGap(); double orientation = aZone->GetHatchFillTypeOrientation(); SHAPE_POLY_SET filledPolys = aRawPolys; // Use a area that contains the rotated bbox by orientation, // and after rotate the result by -orientation. if( orientation != 0.0 ) { filledPolys.Rotate( M_PI/180.0 * orientation, VECTOR2I( 0,0 ) ); } BOX2I bbox = filledPolys.BBox( 0 ); // Build hole shape // the hole size is aZone->GetHatchFillTypeGap(), but because the outline thickness // is aZone->GetMinThickness(), the hole shape size must be larger SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchFillTypeGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true ); // Calculate minimal area of a grid hole. // All holes smaller than a threshold will be removed double minimal_hole_area = hole_base.Area() / 2; // Now convert this hole to a smoothed shape: if( aZone->GetHatchFillTypeSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size // of the HatchFillTypeGap scaled by aZone->GetHatchFillTypeSmoothingValue() // aZone->GetHatchFillTypeSmoothingValue() = 1.0 is the max value for the chamfer or the // radius of corner (radius = half size of the hole) int smooth_value = KiROUND( aZone->GetHatchFillTypeGap() * aZone->GetHatchFillTypeSmoothingValue() / 2 ); // Minimal optimization: // make smoothing only for reasonnable smooth values, to avoid a lot of useless segments // and if the smooth value is small, use chamfer even if fillet is requested #define SMOOTH_MIN_VAL_MM 0.02 #define SMOOTH_SMALL_VAL_MM 0.04 if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchFillTypeSmoothingLevel(); if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1; // Use a larger smooth_value to compensate the outline tickness // (chamfer is not visible is smooth value < outline thickess) smooth_value += aZone->GetMinThickness()/2; // smooth_value cannot be bigger than the half size oh the hole: smooth_value = std::min( smooth_value, aZone->GetHatchFillTypeGap()/2 ); // the error to approximate a circle by segments when smoothing corners by a arc int error_max = std::max( Millimeter2iu( 0.01), smooth_value/20 ); switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point // for the chamfer. hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break; default: if( aZone->GetHatchFillTypeSmoothingLevel() > 2 ) error_max /= 2; // Force better smoothing hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 ); break; case 0: break; }; } } // Build holes SHAPE_POLY_SET holes; for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize; if( xpos > bbox.GetWidth() ) break; for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize; if( ypos > bbox.GetHeight() ) break; // Generate hole SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } } holes.Move( bbox.GetPosition() ); // Clamp holes to the area of filled zones with a outline thickness // > aZone->GetMinThickness() to be sure the thermal pads can be built int outline_margin = std::max( (aZone->GetMinThickness()*10)/9, linethickness/2 ); filledPolys.Deflate( outline_margin, 16 ); holes.BooleanIntersection( filledPolys, SHAPE_POLY_SET::PM_FAST ); if( orientation != 0.0 ) holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) ); // Now filter truncated holes to avoid small holes in pattern // It happens for holes near the zone outline for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area(); if( area < minimal_hole_area ) // The current hole is too small: remove it holes.DeletePolygon( ii ); else ++ii; } // create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to // generate strictly simple polygons needed by Gerber files and Fracture() aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); }