/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 CERN * @author Tomasz Wlostowski * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "sim_plot_panel.h" #include #include static wxString formatFloat (double x, int nDigits) { wxString rv, fmt; if(nDigits) { fmt = wxT("%.0Nf"); fmt[3] = '0' + nDigits; } else { fmt = wxT("%.0f"); } rv.Printf(fmt, x); return rv; } static wxString formatSI ( double x, const wxString& unit, int decimalDigits, double maxValue = 0.0, bool lockSuffix = false, char suffix = 0 ) { const int n_powers = 11; const struct { double exponent; char suffix; } powers[] = { {-18,'a'}, {-15,'f'}, {-12,'p'}, {-9,'n'}, {-6,'u'}, {-3,'m'}, {0, 0}, {3, 'k'}, {6, 'M'}, {9, 'G'}, {12, 'T'}, {15, 'P'} }; if ( x== 0.0) { return wxT("0") + unit; } for ( int i = 0; i = r_cur && fabs(maxValue) < r_cur * 1000.0 ; else rangeHit = fabs(x) >= r_cur && fabs(x) < r_cur * 1000.0 ; if( (!lockSuffix && rangeHit) || (lockSuffix && suffix == powers[i].suffix ) ) { double v = x / r_cur; wxString rv; rv = formatFloat ( v, decimalDigits ); if(powers[i].suffix) rv += powers[i].suffix; rv += unit; return rv; } } return wxT("?"); } class FREQUENCY_LIN_SCALE : public mpScaleX { public: FREQUENCY_LIN_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleX( name, flags, ticks ,type ) {}; const wxString getLabel( int n ) { printf("%.10f\n", m_labeledTicks[n] ); return formatSI ( m_labeledTicks[n], wxT("Hz"), 2 ); } }; class FREQUENCY_LOG_SCALE : public mpScaleXLog { public: FREQUENCY_LOG_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleXLog( name, flags, ticks ,type ) {}; const wxString getLabel( int n ) { printf("%.10f\n", m_labeledTicks[n] ); return formatSI ( m_labeledTicks[n], wxT("Hz"), 2 ); } }; class TIME_SCALE : public mpScaleX { public: TIME_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleX ( name, flags, ticks ,type ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("s"), 3, AbsVisibleMaxValue() ); } }; class VOLTAGE_SCALE_X : public mpScaleX { public: VOLTAGE_SCALE_X(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleX ( name, flags, ticks, type ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("V"), 3, AbsVisibleMaxValue() ); } }; class GAIN_SCALE : public mpScaleY { public: GAIN_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleY ( name, flags, ticks ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("dB"), 1, AbsVisibleMaxValue(), true, 0 ); } }; class PHASE_SCALE : public mpScaleY { public: PHASE_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleY ( name, flags, ticks ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("\u00B0"), 1, AbsVisibleMaxValue(), true, 0 ); } }; class VOLTAGE_SCALE_Y : public mpScaleY { public: VOLTAGE_SCALE_Y(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleY ( name, flags, ticks ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("V"), 3, AbsVisibleMaxValue() ); } }; class CURRENT_SCALE : public mpScaleY { public: CURRENT_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) : mpScaleY ( name, flags, ticks ) {}; const wxString getLabel( int n ) { return formatSI ( m_labeledTicks[n], wxT("A"), 3, AbsVisibleMaxValue() ); } }; void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow ) { if( !m_window ) m_window = &aWindow; if( !m_visible ) return; const auto& dataX = m_trace->GetDataX(); const auto& dataY = m_trace->GetDataY(); if( dataX.size() <= 1 ) return; if( m_updateRequired ) { m_coords.x = m_trace->s2x( aWindow.p2x( m_dim.x ) ); // Find the closest point coordinates auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x ); int maxIdx = maxXIt - dataX.begin(); int minIdx = maxIdx - 1; // Out of bounds checks if( minIdx < 0 ) { minIdx = 0; maxIdx = 1; m_coords.x = dataX[0]; } else if( maxIdx >= (int) dataX.size() ) { maxIdx = dataX.size() - 1; minIdx = maxIdx - 1; m_coords.x = dataX[maxIdx]; } const double leftX = dataX[minIdx]; const double rightX = dataX[maxIdx]; const double leftY = dataY[minIdx]; const double rightY = dataY[maxIdx]; // Linear interpolation m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX ); m_updateRequired = false; // Notify the parent window about the changes wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } else { UpdateReference(); } // Line length in horizontal and vertical dimensions const wxPoint cursorPos( aWindow.x2p( m_trace->x2s( m_coords.x ) ), aWindow.y2p( m_trace->y2s( m_coords.y ) ) ); wxCoord leftPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginLeft(); wxCoord rightPx = m_drawOutsideMargins ? aWindow.GetScrX() : aWindow.GetScrX() - aWindow.GetMarginRight(); wxCoord topPx = m_drawOutsideMargins ? 0 : aWindow.GetMarginTop(); wxCoord bottomPx = m_drawOutsideMargins ? aWindow.GetScrY() : aWindow.GetScrY() - aWindow.GetMarginBottom(); aDC.SetPen( wxPen( *wxWHITE, 1, m_continuous ? wxSOLID : wxLONG_DASH ) ); if( topPx < cursorPos.y && cursorPos.y < bottomPx ) aDC.DrawLine( leftPx, cursorPos.y, rightPx, cursorPos.y ); if( leftPx < cursorPos.x && cursorPos.x < rightPx ) aDC.DrawLine( cursorPos.x, topPx, cursorPos.x, bottomPx ); } bool CURSOR::Inside( wxPoint& aPoint ) { if( !m_window ) return false; return ( std::abs( aPoint.x - m_window->x2p( m_trace->x2s( m_coords.x ) ) ) <= DRAG_MARGIN ) && ( std::abs( aPoint.y - m_window->y2p( m_trace->y2s( m_coords.y ) ) ) <= DRAG_MARGIN ); } void CURSOR::UpdateReference() { if( !m_window ) return; m_reference.x = m_window->x2p( m_trace->x2s( m_coords.x ) ); m_reference.y = m_window->y2p( m_trace->y2s( m_coords.y ) ); } SIM_PLOT_PANEL::SIM_PLOT_PANEL( SIM_TYPE aType, wxWindow* parent, wxWindowID id, const wxPoint& pos, const wxSize& size, long style, const wxString& name ) : mpWindow( parent, id, pos, size, style ), m_colorIdx( 0 ), m_axis_x( nullptr ), m_axis_y1( nullptr ), m_axis_y2( nullptr ), m_type( aType ) { LimitView( true ); SetMargins( 50, 80, 50, 80 ); wxColour grey( 96, 96, 96 ); SetColourTheme( *wxBLACK, *wxWHITE, grey ); EnableDoubleBuffer( true ); UpdateAll(); switch( m_type ) { case ST_AC: m_axis_x = new FREQUENCY_LIN_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM ); m_axis_y1 = new GAIN_SCALE( wxT( "Gain" ), mpALIGN_LEFT ); m_axis_y2 = new PHASE_SCALE( wxT( "Phase" ), mpALIGN_RIGHT ); m_axis_y2->SetMasterScale(m_axis_y1); break; case ST_DC: m_axis_x = new VOLTAGE_SCALE_X( wxT( "Voltage (sweeped)" ), mpALIGN_BORDER_BOTTOM ); m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage (measured)" ), mpALIGN_BORDER_LEFT ); break; case ST_NOISE: m_axis_x = new mpScaleX( wxT( "frequency [Hz]" ), mpALIGN_BORDER_BOTTOM ); m_axis_y1 = new mpScaleY( wxT( "noise [(V or A)^2/Hz]" ), mpALIGN_BORDER_LEFT ); break; case ST_TRANSIENT: m_axis_x = new TIME_SCALE( wxT( "Time" ), mpALIGN_BOTTOM ); m_axis_y1 = new VOLTAGE_SCALE_Y( wxT( "Voltage" ), mpALIGN_LEFT ); m_axis_y2 = new CURRENT_SCALE( wxT( "Current" ), mpALIGN_RIGHT ); m_axis_y2->SetMasterScale(m_axis_y1); break; default: // suppress warnings break; } if( m_axis_x ) { m_axis_x->SetTicks( false ); AddLayer( m_axis_x ); } if( m_axis_y1 ) { m_axis_y1->SetTicks( false ); AddLayer( m_axis_y1 ); } if( m_axis_y2 ) { m_axis_y2->SetTicks( false ); AddLayer( m_axis_y2 ); } m_legend = new mpInfoLegend( wxRect( 0, 40, 200, 40 ), wxTRANSPARENT_BRUSH ); AddLayer( m_legend ); m_topLevel.push_back( m_legend ); UpdateAll(); } SIM_PLOT_PANEL::~SIM_PLOT_PANEL() { // ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents } bool SIM_PLOT_PANEL::IsPlottable( SIM_TYPE aSimType ) { switch( aSimType ) { case ST_AC: case ST_DC: case ST_TRANSIENT: return true; default: return false; } } bool SIM_PLOT_PANEL::AddTrace( const wxString& aName, int aPoints, const double* aX, const double* aY, SIM_PLOT_TYPE aFlags ) { TRACE* t = NULL; // Find previous entry, if there is one auto prev = m_traces.find( aName ); bool addedNewEntry = ( prev == m_traces.end() ); if( addedNewEntry ) { // New entry t = new TRACE( aName ); t->SetPen( wxPen( generateColor(), 2, wxSOLID ) ); m_traces[aName] = t; // It is a trick to keep legend & coords always on the top for( mpLayer* l : m_topLevel ) DelLayer( l ); AddLayer( (mpLayer*) t ); for( mpLayer* l : m_topLevel ) AddLayer( l ); } else { t = prev->second; } std::vector tmp( aY, aY + aPoints ); if( m_type == ST_AC ) { if( aFlags & SPT_AC_PHASE ) { for(int i = 0; i < aPoints; i++ ) tmp[i] = tmp[i] * 180.0 / M_PI; // convert to degrees } else { for(int i = 0; i < aPoints; i++ ) tmp[i] = 20 * log( tmp[i] ) / log( 10.0 ); // convert to dB } } t->SetData( std::vector( aX, aX + aPoints ), tmp ); if( aFlags & SPT_AC_PHASE || aFlags & SPT_CURRENT ) t->SetScale( m_axis_x, m_axis_y2 ); else t->SetScale( m_axis_x, m_axis_y1 ); UpdateAll(); return addedNewEntry; } bool SIM_PLOT_PANEL::DeleteTrace( const wxString& aName ) { auto it = m_traces.find( aName ); if( it != m_traces.end() ) { m_traces.erase( it ); TRACE* trace = it->second; if( CURSOR* cursor = trace->GetCursor() ) DelLayer( cursor, true ); DelLayer( trace, true, true ); return true; } return false; } void SIM_PLOT_PANEL::DeleteAllTraces() { for( auto& t : m_traces ) { DeleteTrace( t.first ); } m_traces.clear(); } bool SIM_PLOT_PANEL::HasCursorEnabled( const wxString& aName ) const { TRACE* t = GetTrace( aName ); return t ? t->HasCursor() : false; } void SIM_PLOT_PANEL::EnableCursor( const wxString& aName, bool aEnable ) { TRACE* t = GetTrace( aName ); if( t == nullptr || t->HasCursor() == aEnable ) return; if( aEnable ) { CURSOR* c = new CURSOR( t ); t->SetCursor( c ); AddLayer( c ); } else { CURSOR* c = t->GetCursor(); t->SetCursor( NULL ); DelLayer( c, true ); } // Notify the parent window about the changes wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } wxColour SIM_PLOT_PANEL::generateColor() { /// @todo have a look at: /// http://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html /// https://github.com/Gnuplotting/gnuplot-palettes const unsigned long colors[] = { 0x0000ff, 0x00ff00, 0xff0000, 0x00ffff, 0xff00ff, 0xffff000, 0xffffff }; //const unsigned long colors[] = { 0xe3cea6, 0xb4781f, 0x8adfb2, 0x2ca033, 0x999afb, 0x1c1ae3, 0x6fbffd, 0x007fff, 0xd6b2ca, 0x9a3d6a }; // hls //const unsigned long colors[] = { 0x0f1689, 0x0f7289, 0x35890f, 0x0f8945, 0x89260f, 0x890f53, 0x89820f, 0x630f89 }; // pastels, good for dark background //const unsigned long colors[] = { 0x2fd8fe, 0x628dfa, 0x53d8a6, 0xa5c266, 0xb3b3b3, 0x94c3e4, 0xca9f8d, 0xac680e }; const unsigned int colorCount = sizeof(colors) / sizeof(unsigned long); /// @todo generate shades to avoid repeating colors return wxColour( colors[m_colorIdx++ % colorCount] ); } wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );