/*******************************************/ /* mounde.cpp - Microwave pcb layout code. */ /*******************************************/ #include "fctsys.h" #include "class_drawpanel.h" #include "confirm.h" #include "trigo.h" #include "kicad_string.h" #include "gestfich.h" #include "pcbnew.h" #include "wxPcbStruct.h" #include "class_board_design_settings.h" #include "protos.h" #include "dialog_helpers.h" #include "richio.h" #include "filter_reader.h" #define COEFF_COUNT 6 static double* PolyEdges; static int PolyEdgesCount; static double ShapeScaleX, ShapeScaleY; static wxSize ShapeSize; static int PolyShapeType; static void Exit_Self( EDA_DRAW_PANEL* Panel, wxDC* DC ); static void gen_arc( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aCenter, int a_ArcAngle ); static void ShowBoundingBoxMicroWaveInductor( EDA_DRAW_PANEL* apanel, wxDC* aDC, const wxPoint& aPosition, bool aErase ); int BuildCornersList_S_Shape( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aEndPoint, int aLength, int aWidth ); class SELFPCB { public: int forme; // Shape: coil, spiral, etc .. wxPoint m_Start; wxPoint m_End; wxSize m_Size; int lng; // Trace length. int m_Width; // Trace width. }; static SELFPCB Mself; static int Self_On; /* This function shows on screen the bounding box of the inductor that will be * created at the end of the build inductor process */ static void ShowBoundingBoxMicroWaveInductor( EDA_DRAW_PANEL* aPanel, wxDC* aDC, const wxPoint& aPosition, bool aErase ) { /* Calculate the orientation and size of the box containing the inductor: * the box is a rectangle with height = lenght/2 * the shape is defined by a rectangle, nor necessary horizontal or vertical */ GRSetDrawMode( aDC, GR_XOR ); wxPoint poly[5]; wxPoint pt = Mself.m_End - Mself.m_Start; int angle = -wxRound( atan2( (double) pt.y, (double) pt.x ) * 1800.0 / M_PI ); int len = wxRound( sqrt( (double) pt.x * pt.x + (double) pt.y * pt.y ) ); // calculate corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = Mself.m_Start + pt; poly[1] = Mself.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = Mself.m_End + pt; poly[3] = Mself.m_Start + pt; poly[4] = poly[0]; if( aErase ) { GRPoly( &aPanel->m_ClipBox, aDC, 5, poly, false, 0, YELLOW, YELLOW ); } Mself.m_End = aPanel->GetScreen()->GetCrossHairPosition(); pt = Mself.m_End - Mself.m_Start; angle = -wxRound( atan2( (double) pt.y, (double) pt.x ) * 1800.0 / M_PI ); len = wxRound( sqrt( (double) pt.x * pt.x + (double) pt.y * pt.y ) ); // calculate new corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = Mself.m_Start + pt; poly[1] = Mself.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = Mself.m_End + pt; poly[3] = Mself.m_Start + pt; poly[4] = poly[0]; GRPoly( &aPanel->m_ClipBox, aDC, 5, poly, false, 0, YELLOW, YELLOW ); } void Exit_Self( EDA_DRAW_PANEL* Panel, wxDC* DC ) { if( Self_On ) { Self_On = 0; Panel->m_mouseCaptureCallback( Panel, DC, wxDefaultPosition, 0 ); } } void PCB_EDIT_FRAME::Begin_Self( wxDC* DC ) { if( Self_On ) { Genere_Self( DC ); return; } Mself.m_Start = GetScreen()->GetCrossHairPosition(); Mself.m_End = Mself.m_Start; Self_On = 1; /* Update the initial coordinates. */ GetScreen()->m_O_Curseur = GetScreen()->GetCrossHairPosition(); UpdateStatusBar(); DrawPanel->SetMouseCapture( ShowBoundingBoxMicroWaveInductor, Exit_Self ); DrawPanel->m_mouseCaptureCallback( DrawPanel, DC, wxDefaultPosition, false ); } /* Create a self-shaped coil * - Length Mself.lng * - Extremities Mself.m_Start and Mself.m_End * * We must determine: * Mself.nbrin = number of segments perpendicular to the direction * (The coil nbrin will demicercles + 1 + 2 1 / 4 circle) * Mself.lbrin = length of a strand * Mself.radius = radius of rounded parts of the coil * Mself.delta = segments extremities connection between him and the coil even * * The equations are * Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin * Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius * Mself.lng = 2 * Mself.delta / / connections to the coil + (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last + (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded * Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit * * The constraints are: * Nbrin >= 2 * Mself.radius < Mself.m_Size.x * Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord * Mself.lbrin> Mself.radius * 2 * * The calculation is conducted in the following way: * Initially: * Nbrin = 2 * Radius = 4 * m_Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (Radius decreases if necessary) * */ MODULE* PCB_EDIT_FRAME::Genere_Self( wxDC* DC ) { D_PAD* PtPad; int ll; wxString msg; DrawPanel->m_mouseCaptureCallback( DrawPanel, DC, wxDefaultPosition, false ); DrawPanel->SetMouseCapture( NULL, NULL ); if( Self_On == 0 ) { DisplayError( this, wxT( "Starting point not init.." ) ); return NULL; } Self_On = 0; Mself.m_End = GetScreen()->GetCrossHairPosition(); wxPoint pt = Mself.m_End - Mself.m_Start; int min_len = wxRound( sqrt( (double) pt.x * pt.x + (double) pt.y * pt.y ) ); Mself.lng = min_len; /* Enter the desired length. */ msg = ReturnStringFromValue( g_UserUnit, Mself.lng, GetScreen()->GetInternalUnits() ); wxTextEntryDialog dlg( this, _( "Length:" ), _( "Length" ), msg ); if( dlg.ShowModal() != wxID_OK ) return NULL; // cancelled by user msg = dlg.GetValue(); Mself.lng = ReturnValueFromString( g_UserUnit, msg, GetScreen()->GetInternalUnits() ); /* Control values (ii = minimum length) */ if( Mself.lng < min_len ) { DisplayError( this, _( "Requested length < minimum length" ) ); return NULL; } /* Calculate the elements. */ Mself.m_Width = GetBoard()->GetCurrentTrackWidth(); std::vector buffer; ll = BuildCornersList_S_Shape( buffer, Mself.m_Start, Mself.m_End, Mself.lng, Mself.m_Width ); if( !ll ) { DisplayError( this, _( "Requested length too large" ) ); return NULL; } /* Generate module. */ MODULE* Module; Module = Create_1_Module( wxEmptyString ); if( Module == NULL ) return NULL; // here the Module is already in the BOARD, Create_1_Module() does that. Module->m_LibRef = wxT( "MuSelf" ); Module->m_Attributs = MOD_VIRTUAL | MOD_CMS; Module->m_Flags = 0; Module->m_Pos = Mself.m_End; /* Generate segments. */ for( unsigned jj = 1; jj < buffer.size(); jj++ ) { EDGE_MODULE* PtSegm; PtSegm = new EDGE_MODULE( Module ); PtSegm->m_Start = buffer[jj - 1]; PtSegm->m_End = buffer[jj]; PtSegm->m_Width = Mself.m_Width; PtSegm->SetLayer( Module->GetLayer() ); PtSegm->m_Shape = S_SEGMENT; PtSegm->m_Start0 = PtSegm->m_Start - Module->m_Pos; PtSegm->m_End0 = PtSegm->m_End - Module->m_Pos; Module->m_Drawings.PushBack( PtSegm ); } /* Place a pad on each end of coil. */ PtPad = new D_PAD( Module ); Module->m_Pads.PushFront( PtPad ); PtPad->SetPadName( wxT( "1" ) ); PtPad->m_Pos = Mself.m_End; PtPad->m_Pos0 = PtPad->m_Pos - Module->m_Pos; PtPad->m_Size.x = PtPad->m_Size.y = Mself.m_Width; PtPad->m_layerMask = g_TabOneLayerMask[Module->GetLayer()]; PtPad->m_Attribut = PAD_SMD; PtPad->m_PadShape = PAD_CIRCLE; PtPad->ComputeShapeMaxRadius(); D_PAD* newpad = new D_PAD( Module ); newpad->Copy( PtPad ); Module->m_Pads.Insert( newpad, PtPad->Next() ); PtPad = newpad; PtPad->SetPadName( wxT( "2" ) ); PtPad->m_Pos = Mself.m_Start; PtPad->m_Pos0 = PtPad->m_Pos - Module->m_Pos; /* Modify text positions. */ Module->DisplayInfo( this ); Module->m_Value->m_Pos.x = Module->m_Reference->m_Pos.x = ( Mself.m_Start.x + Mself.m_End.x ) / 2; Module->m_Value->m_Pos.y = Module->m_Reference->m_Pos.y = ( Mself.m_Start.y + Mself.m_End.y ) / 2; Module->m_Reference->m_Pos.y -= Module->m_Reference->m_Size.y; Module->m_Value->m_Pos.y += Module->m_Value->m_Size.y; Module->m_Reference->m_Pos0 = Module->m_Reference->m_Pos - Module->m_Pos; Module->m_Value->m_Pos0 = Module->m_Value->m_Pos - Module->m_Pos; Module->CalculateBoundingBox(); Module->Draw( DrawPanel, DC, GR_OR ); return Module; } /** gen_arc * Generate an arc using arc approximation by lines: * Center aCenter * Angle "angle" (in 0.1 deg) * @param aBuffer = a buffer to store points. * @param aStartPoint = starting point of arc. * @param aCenter = arc centre. * @param a_ArcAngle = arc length in 0.1 degrees. */ static void gen_arc( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aCenter, int a_ArcAngle ) { #define SEGM_COUNT_PER_360DEG 16 wxPoint first_point = aStartPoint - aCenter; int seg_count = ( ( abs( a_ArcAngle ) ) * SEGM_COUNT_PER_360DEG ) / 3600; if( seg_count == 0 ) seg_count = 1; double increment_angle = (double) a_ArcAngle * 3.14159 / 1800 / seg_count; // Creates nb_seg point to approximate arc by segments: for( int ii = 1; ii <= seg_count; ii++ ) { double rot_angle = increment_angle * ii; double fcos = cos( rot_angle ); double fsin = sin( rot_angle ); wxPoint currpt; // Rotate current point: currpt.x = wxRound( ( first_point.x * fcos + first_point.y * fsin ) ); currpt.y = wxRound( ( first_point.y * fcos - first_point.x * fsin ) ); wxPoint corner = aCenter + currpt; aBuffer.push_back( corner ); } } /** * Function BuildCornersList_S_Shape * Create a path like a S-shaped coil * @param aBuffer = a buffer where to store points (ends of segments) * @param aStartPoint = starting point of the path * @param aEndPoint = ending point of the path * @param aLength = full lenght of the path * @param aWidth = segment width */ int BuildCornersList_S_Shape( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aEndPoint, int aLength, int aWidth ) { /* We must determine: * segm_count = number of segments perpendicular to the direction * segm_len = length of a strand * radius = radius of rounded parts of the coil * stubs_len = length of the 2 stubs( segments parallel to the direction) * connecting the start point to the start point of the S shape * and the ending point to the end point of the S shape * The equations are (assuming the area size of the entire shape is Size: * Size.x = 2 * radius + segm_len * Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len * Mself.lng = 2 * delta // connections to the coil * + (segm_count-2) * segm_len // length of the strands except 1st and last * + (segm_count) * (PI * radius) // length of rounded * segm_len + / 2 - radius * 2) // length of 1st and last bit * * The constraints are: * segm_count >= 2 * radius < m_Size.x * Size.y = (radius * 4) + (2 * stubs_len) * segm_len > radius * 2 * * The calculation is conducted in the following way: * first: * segm_count = 2 * radius = 4 * Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (radius decreases if necessary) */ wxSize size; // This scale factor adjust the arc lenght to handle // the arc to segment approximation. // because we use SEGM_COUNT_PER_360DEG segment to approximate a circle, // the trace len must be corrected when calculated using arcs // this factor adjust calculations and must be canged if SEGM_COUNT_PER_360DEG is modified // because trace using segment is shorter the corresponding arc // ADJUST_SIZE is the ratio between tline len and the arc len for an arc // of 360/ADJUST_SIZE angle #define ADJUST_SIZE 0.988 wxPoint pt = aEndPoint - aStartPoint; int angle = -wxRound( atan2( (double) pt.y, (double) pt.x ) * 1800.0 / M_PI ); int min_len = wxRound( sqrt( (double) pt.x * pt.x + (double) pt.y * pt.y ) ); int segm_len = 0; // length of segments int full_len; // full len of shape (sum of lenght of all segments + arcs) /* Note: calculations are made for a vertical coil (more easy calculations) * and after points are rotated to their actual position * So the main direction is the Y axis. * the 2 stubs are on the Y axis * the others segments are parallel to the X axis. */ // Calculate the size of area (for a vertical shape) size.x = min_len / 2; size.y = min_len; // Choose a reasonable starting value for the radius of the arcs. int radius = MIN( aWidth * 5, size.x / 4 ); int segm_count; // number of full len segments // the half size segments (first and last segment) are not counted here int stubs_len = 0; // lenght of first or last segment (half size of others segments) for( segm_count = 0; ; segm_count++ ) { stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2; if( stubs_len < size.y / 10 ) // Reduce radius. { stubs_len = size.y / 10; radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) ); if( radius < aWidth ) // Radius too small. { // Unable to create line: Requested length value is too large for room return 0; } } segm_len = size.x - ( radius * 2 ); full_len = 2 * stubs_len; // Length of coil connections. full_len += segm_len * segm_count; // Length of full length segments. full_len += wxRound( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len full_len += segm_len - (2 * radius); // Length of first and last segments // (half size segments len = segm_len/2 - radius). if( full_len >= aLength ) break; } // Adjust len by adjusting segm_len: int delta_size = full_len - aLength; // reduce len of the segm_count segments + 2 half size segments (= 1 full size segment) segm_len -= delta_size / (segm_count + 1); // Generate first line (the first stub) and first arc (90 deg arc) pt = aStartPoint; aBuffer.push_back( pt ); pt.y += stubs_len; aBuffer.push_back( pt ); wxPoint centre = pt; centre.x -= radius; gen_arc( aBuffer, pt, centre, -900 ); pt = aBuffer.back(); int half_size_seg_len = segm_len / 2 - radius; if( half_size_seg_len ) { pt.x -= half_size_seg_len; aBuffer.push_back( pt ); } /* Create shape. */ int ii; int sign = 1; segm_count += 1; // increase segm_count to create the last half_size segment for( ii = 0; ii < segm_count; ii++ ) { int arc_angle; if( ii & 1 ) /* odd order arcs are greater than 0 */ sign = -1; else sign = 1; arc_angle = 1800 * sign; centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, arc_angle ); pt = aBuffer.back(); pt.x += segm_len * sign; aBuffer.push_back( pt ); } // The last point is false: // it is the end of a full size segment, but must be // the end of the second half_size segment. Change it. sign *= -1; aBuffer.back().x = aStartPoint.x + radius * sign; // create last arc pt = aBuffer.back(); centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, 900 * sign ); pt = aBuffer.back(); // Rotate point angle += 900; for( unsigned jj = 0; jj < aBuffer.size(); jj++ ) { RotatePoint( &aBuffer[jj].x, &aBuffer[jj].y, aStartPoint.x, aStartPoint.y, angle ); } // push last point (end point) aBuffer.push_back( aEndPoint ); return 1; } /* Create a footprint with pad_count pads for micro wave applications * This footprint has pad_count pads: * PAD_SMD, rectangular, H size = V size = current track width. */ MODULE* PCB_EDIT_FRAME::Create_MuWaveBasicShape( const wxString& name, int pad_count ) { MODULE* Module; int pad_num = 1; wxString Line; Module = Create_1_Module( name ); if( Module == NULL ) return NULL; #define DEFAULT_SIZE 30 Module->m_TimeStamp = GetTimeStamp(); Module->m_Value->m_Size = wxSize( DEFAULT_SIZE, DEFAULT_SIZE ); Module->m_Value->m_Pos0.y = -DEFAULT_SIZE; Module->m_Value->m_Pos.y += Module->m_Value->m_Pos0.y; Module->m_Value->m_Thickness = DEFAULT_SIZE / 4; Module->m_Reference->m_Size = wxSize( DEFAULT_SIZE, DEFAULT_SIZE ); Module->m_Reference->m_Pos0.y = DEFAULT_SIZE; Module->m_Reference->m_Pos.y += Module->m_Reference->m_Pos0.y; Module->m_Reference->m_Thickness = DEFAULT_SIZE / 4; /* Create 2 pads used in gaps and stubs. * The gap is between these 2 pads * the stub is the pad 2 */ while( pad_count-- ) { D_PAD* pad = new D_PAD( Module ); Module->m_Pads.PushFront( pad ); pad->m_Size.x = pad->m_Size.y = GetBoard()->GetCurrentTrackWidth(); pad->m_Pos = Module->m_Pos; pad->m_PadShape = PAD_RECT; pad->m_Attribut = PAD_SMD; pad->m_layerMask = LAYER_FRONT; Line.Printf( wxT( "%d" ), pad_num ); pad->SetPadName( Line ); pad_num++; } return Module; } /* Create a module "GAP" or "STUB" * This a "gap" or "stub" used in micro wave designs * This module has 2 pads: * PAD_SMD, rectangular, H size = V size = current track width. * the "gap" is isolation created between this 2 pads */ MODULE* PCB_EDIT_FRAME::Create_MuWaveComponent( int shape_type ) { int oX; D_PAD* pad; MODULE* Module; wxString msg, cmp_name; int pad_count = 2; int angle = 0; /* Enter the size of the gap or stub*/ int gap_size = GetBoard()->GetCurrentTrackWidth(); switch( shape_type ) { case 0: msg = _( "Gap" ); cmp_name = wxT( "GAP" ); break; case 1: msg = _( "Stub" ); cmp_name = wxT( "STUB" ); pad_count = 2; break; case 2: msg = _( "Arc Stub" ); cmp_name = wxT( "ASTUB" ); pad_count = 1; break; default: msg = wxT( "???" ); break; } wxString value = ReturnStringFromValue( g_UserUnit, gap_size, GetScreen()->GetInternalUnits() ); wxTextEntryDialog dlg( this, msg, _( "Create microwave module" ), value ); if( dlg.ShowModal() != wxID_OK ) { DrawPanel->MoveCursorToCrossHair(); return NULL; // cancelled by user } value = dlg.GetValue(); gap_size = ReturnValueFromString( g_UserUnit, value, GetScreen()->GetInternalUnits() ); bool abort = false; if( shape_type == 2 ) { double fcoeff = 10.0, fval; msg.Printf( wxT( "%3.1f" ), angle / fcoeff ); wxTextEntryDialog angledlg( this, _( "Angle (0.1deg):" ), _( "Create microwave module" ), msg ); if( angledlg.ShowModal() != wxID_OK ) { DrawPanel->MoveCursorToCrossHair(); return NULL; // cancelled by user } msg = angledlg.GetValue(); if( !msg.ToDouble( &fval ) ) { DisplayError( this, _( "Incorrect number, abort" ) ); abort = true; } angle = ABS( wxRound( fval * fcoeff ) ); if( angle > 1800 ) angle = 1800; } if( abort ) { DrawPanel->MoveCursorToCrossHair(); return NULL; } Module = Create_MuWaveBasicShape( cmp_name, pad_count ); pad = Module->m_Pads; switch( shape_type ) { case 0: //Gap : oX = pad->m_Pos0.x = -( gap_size + pad->m_Size.x ) / 2; pad->m_Pos.x += pad->m_Pos0.x; pad = pad->Next(); pad->m_Pos0.x = oX + gap_size + pad->m_Size.x; pad->m_Pos.x += pad->m_Pos0.x; break; case 1: //Stub : pad->SetPadName( wxT( "1" ) ); pad = pad->Next(); pad->m_Pos0.y = -( gap_size + pad->m_Size.y ) / 2; pad->m_Size.y = gap_size; pad->m_Pos.y += pad->m_Pos0.y; break; case 2: // Arc Stub created by a polygonal approach: { EDGE_MODULE* edge = new EDGE_MODULE( Module ); Module->m_Drawings.PushFront( edge ); edge->m_Shape = S_POLYGON; edge->SetLayer( LAYER_N_FRONT ); int numPoints = angle / 50 + 3; // Note: angles are in 0.1 degrees std::vector polyPoints = edge->GetPolyPoints(); polyPoints.reserve( numPoints ); edge->m_Start0.y = -pad->m_Size.y / 2; polyPoints.push_back( wxPoint( 0, 0 ) ); int theta = -angle / 2; for( int ii = 1; ii angle / 2 ) theta = angle / 2; } // Close the polygon: polyPoints.push_back( polyPoints[0] ); } break; default: break; } Module->CalculateBoundingBox(); GetBoard()->m_Status_Pcb = 0; OnModify(); return Module; } /**************** Polygon Shapes ***********************/ enum id_mw_cmd { ID_READ_SHAPE_FILE = 1000 }; /* Setting polynomial form parameters */ class WinEDA_SetParamShapeFrame : public wxDialog { private: PCB_EDIT_FRAME* m_Parent; wxRadioBox* m_ShapeOptionCtrl; EDA_SIZE_CTRL* m_SizeCtrl; public: WinEDA_SetParamShapeFrame( PCB_EDIT_FRAME* parent, const wxPoint& pos ); ~WinEDA_SetParamShapeFrame() { }; private: void OnOkClick( wxCommandEvent& event ); void OnCancelClick( wxCommandEvent& event ); void ReadDataShapeDescr( wxCommandEvent& event ); void AcceptOptions( wxCommandEvent& event ); DECLARE_EVENT_TABLE() }; BEGIN_EVENT_TABLE( WinEDA_SetParamShapeFrame, wxDialog ) EVT_BUTTON( wxID_OK, WinEDA_SetParamShapeFrame::OnOkClick ) EVT_BUTTON( wxID_CANCEL, WinEDA_SetParamShapeFrame::OnCancelClick ) EVT_BUTTON( ID_READ_SHAPE_FILE, WinEDA_SetParamShapeFrame::ReadDataShapeDescr ) END_EVENT_TABLE() WinEDA_SetParamShapeFrame::WinEDA_SetParamShapeFrame( PCB_EDIT_FRAME* parent, const wxPoint& framepos ) : wxDialog( parent, -1, _( "Complex shape" ), framepos, wxSize( 350, 280 ), DIALOG_STYLE ) { m_Parent = parent; if( PolyEdges ) free( PolyEdges ); PolyEdges = NULL; PolyEdgesCount = 0; wxBoxSizer* MainBoxSizer = new wxBoxSizer( wxHORIZONTAL ); SetSizer( MainBoxSizer ); wxBoxSizer* LeftBoxSizer = new wxBoxSizer( wxVERTICAL ); wxBoxSizer* RightBoxSizer = new wxBoxSizer( wxVERTICAL ); MainBoxSizer->Add( LeftBoxSizer, 0, wxGROW | wxALL, 5 ); MainBoxSizer->Add( RightBoxSizer, 0, wxALIGN_CENTER_VERTICAL | wxALL, 5 ); wxButton* Button = new wxButton( this, wxID_OK, _( "OK" ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); Button = new wxButton( this, wxID_CANCEL, _( "Cancel" ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); Button = new wxButton( this, ID_READ_SHAPE_FILE, _( "Read Shape Description File..." ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); wxString shapelist[3] = { _( "Normal" ), _( "Symmetrical" ), _( "Mirrored" ) }; m_ShapeOptionCtrl = new wxRadioBox( this, -1, _( "Shape Option" ), wxDefaultPosition, wxDefaultSize, 3, shapelist, 1, wxRA_SPECIFY_COLS ); LeftBoxSizer->Add( m_ShapeOptionCtrl, 0, wxGROW | wxALL, 5 ); m_SizeCtrl = new EDA_SIZE_CTRL( this, _( "Size" ), ShapeSize, g_UserUnit, LeftBoxSizer, PCB_INTERNAL_UNIT ); GetSizer()->Fit( this ); GetSizer()->SetSizeHints( this ); } void WinEDA_SetParamShapeFrame::OnCancelClick( wxCommandEvent& event ) { if( PolyEdges ) free( PolyEdges ); PolyEdges = NULL; PolyEdgesCount = 0; EndModal( -1 ); } void WinEDA_SetParamShapeFrame::OnOkClick( wxCommandEvent& event ) { ShapeSize = m_SizeCtrl->GetValue(); PolyShapeType = m_ShapeOptionCtrl->GetSelection(); EndModal( 1 ); } /* Read a description shape file * File format is * Unit=MM * XScale=271.501 * YScale=1.00133 * * $COORD * 0 0.6112600148417837 * 0.001851851851851852 0.6104800531118608 * .... * $ENDCOORD * * Each line is the X Y coord (normalized units from 0 to 1) */ void WinEDA_SetParamShapeFrame::ReadDataShapeDescr( wxCommandEvent& event ) { wxString FullFileName; wxString ext, mask; FILE* File; char* Line; double unitconv = 10000; char* param1, * param2; int bufsize; double* ptbuf; ext = wxT( ".txt" ); mask = wxT( "*" ) + ext; FullFileName = EDA_FileSelector( _( "Read descr shape file" ), wxEmptyString, FullFileName, ext, mask, this, wxFD_OPEN, true ); if( FullFileName.IsEmpty() ) return; File = wxFopen( FullFileName, wxT( "rt" ) ); if( File == NULL ) { DisplayError( this, _( "File not found" ) ); return; } FILE_LINE_READER fileReader( File, FullFileName ); FILTER_READER reader( fileReader ); bufsize = 100; ptbuf = PolyEdges = (double*) MyZMalloc( bufsize * 2 * sizeof(double) ); SetLocaleTo_C_standard(); while( reader.ReadLine() ) { Line = reader.Line(); param1 = strtok( Line, " =\n\r" ); param2 = strtok( NULL, " \t\n\r" ); if( strnicmp( param1, "Unit", 4 ) == 0 ) { if( strnicmp( param2, "inch", 4 ) == 0 ) unitconv = 10000; if( strnicmp( param2, "mm", 2 ) == 0 ) unitconv = 10000 / 25.4; } if( strnicmp( param1, "$ENDCOORD", 8 ) == 0 ) break; if( strnicmp( param1, "$COORD", 6 ) == 0 ) { while( reader.ReadLine() ) { Line = reader.Line(); param1 = strtok( Line, " \t\n\r" ); param2 = strtok( NULL, " \t\n\r" ); if( strnicmp( param1, "$ENDCOORD", 8 ) == 0 ) break; if( bufsize <= PolyEdgesCount ) { int index = ptbuf - PolyEdges; bufsize *= 2; ptbuf = PolyEdges = (double*) realloc( PolyEdges, bufsize * 2 * sizeof(double) ); ptbuf += index; } *ptbuf = atof( param1 ); ptbuf++; *ptbuf = atof( param2 ); ptbuf++; PolyEdgesCount++; } } if( strnicmp( Line, "XScale", 6 ) == 0 ) { ShapeScaleX = atof( param2 ); } if( strnicmp( Line, "YScale", 6 ) == 0 ) { ShapeScaleY = atof( param2 ); } } if( PolyEdgesCount == 0 ) { free( PolyEdges ); PolyEdges = NULL; } SetLocaleTo_Default(); // revert to the current locale ShapeScaleX *= unitconv; ShapeScaleY *= unitconv; m_SizeCtrl->SetValue( (int) ShapeScaleX, (int) ShapeScaleY ); } MODULE* PCB_EDIT_FRAME::Create_MuWavePolygonShape() { D_PAD* pad1, * pad2; MODULE* Module; wxString cmp_name; int pad_count = 2; EDGE_MODULE* edge; int ii, npoints; WinEDA_SetParamShapeFrame* frame = new WinEDA_SetParamShapeFrame( this, wxPoint( -1, -1 ) ); int ok = frame->ShowModal(); frame->Destroy(); DrawPanel->MoveCursorToCrossHair(); if( ok != 1 ) { if( PolyEdges ) free( PolyEdges ); PolyEdges = NULL; PolyEdgesCount = 0; return NULL; } if( PolyShapeType == 2 ) // mirrored ShapeScaleY = -ShapeScaleY; ShapeSize.x = wxRound( ShapeScaleX ); ShapeSize.y = wxRound( ShapeScaleY ); if( ( ShapeSize.x ) == 0 || ( ShapeSize.y == 0 ) ) { DisplayError( this, _( "Shape has a null size!" ) ); return NULL; } if( PolyEdgesCount == 0 ) { DisplayError( this, _( "Shape has no points!" ) ); return NULL; } cmp_name = wxT( "POLY" ); Module = Create_MuWaveBasicShape( cmp_name, pad_count ); pad1 = Module->m_Pads; pad1->m_Pos0.x = -ShapeSize.x / 2; pad1->m_Pos.x += pad1->m_Pos0.x; pad2 = (D_PAD*) pad1->Next(); pad2->m_Pos0.x = pad1->m_Pos0.x + ShapeSize.x; pad2->m_Pos.x += pad2->m_Pos0.x; edge = new EDGE_MODULE( Module ); Module->m_Drawings.PushFront( edge ); edge->m_Shape = S_POLYGON; edge->SetLayer( LAYER_N_FRONT ); npoints = PolyEdgesCount; std::vector polyPoints = edge->GetPolyPoints(); polyPoints.reserve( 2 * PolyEdgesCount + 2 ); // Init start point coord: polyPoints.push_back( wxPoint( pad1->m_Pos0.x, 0 ) ); double* dptr = PolyEdges; wxPoint first_coordinate, last_coordinate; for( ii = 0; ii < npoints; ii++ ) // Copy points { last_coordinate.x = wxRound( *dptr++ *ShapeScaleX ) + pad1->m_Pos0.x; last_coordinate.y = -wxRound( *dptr++ *ShapeScaleY ); polyPoints.push_back( last_coordinate ); } first_coordinate.y = polyPoints[1].y; switch( PolyShapeType ) { case 0: // Single case 2: // Single mirrored // Init end point coord: pad2->m_Pos0.x = last_coordinate.x; polyPoints.push_back( wxPoint( last_coordinate.x, 0 ) ); pad1->m_Size.x = pad1->m_Size.y = ABS( first_coordinate.y ); pad2->m_Size.x = pad2->m_Size.y = ABS( last_coordinate.y ); pad1->m_Pos0.y = first_coordinate.y / 2; pad2->m_Pos0.y = last_coordinate.y / 2; pad1->m_Pos.y = pad1->m_Pos0.y + Module->m_Pos.y; pad2->m_Pos.y = pad2->m_Pos0.y + Module->m_Pos.y; break; case 1: // Symmetric for( int ndx = polyPoints.size() - 1; ndx>=0; --ndx ) { wxPoint pt = polyPoints[ndx]; pt.y = -pt.y; // mirror about X axis polyPoints.push_back( pt ); } pad1->m_Size.x = pad1->m_Size.y = 2 * ABS( first_coordinate.y ); pad2->m_Size.x = pad2->m_Size.y = 2 * ABS( last_coordinate.y ); break; } free( PolyEdges ); PolyEdgesCount = 0; PolyEdges = NULL; Module->CalculateBoundingBox(); GetBoard()->m_Status_Pcb = 0; OnModify(); return Module; } /* * Edit the GAP module, if it has changed the position and/or size * Pads that form the gap to get a new value of the gap. */ void PCB_EDIT_FRAME::Edit_Gap( wxDC* DC, MODULE* Module ) { int gap_size, oX; D_PAD* pad, * next_pad; wxString msg; if( Module == NULL ) return; /* Test if module is a gap type (name begins with GAP, and has 2 pads). */ msg = Module->m_Reference->m_Text.Left( 3 ); if( msg != wxT( "GAP" ) ) return; pad = Module->m_Pads; if( pad == NULL ) { DisplayError( this, _( "No pad for this module" ) ); return; } next_pad = (D_PAD*) pad->Next(); if( next_pad == NULL ) { DisplayError( this, _( "Only one pad for this module" ) ); return; } Module->Draw( DrawPanel, DC, GR_XOR ); /* Calculate the current dimension. */ gap_size = next_pad->m_Pos0.x - pad->m_Pos0.x - pad->m_Size.x; /* Entrer the desired length of the gap. */ msg = ReturnStringFromValue( g_UserUnit, gap_size, GetScreen()->GetInternalUnits() ); wxTextEntryDialog dlg( this, _( "Gap:" ), _( "Create Microwave Gap" ), msg ); if( dlg.ShowModal() != wxID_OK ) return; // cancelled by user msg = dlg.GetValue(); gap_size = ReturnValueFromString( g_UserUnit, msg, GetScreen()->GetInternalUnits() ); /* Updating sizes of pads forming the gap. */ pad->m_Size.x = pad->m_Size.y = GetBoard()->GetCurrentTrackWidth(); pad->m_Pos0.y = 0; oX = pad->m_Pos0.x = -( (gap_size + pad->m_Size.x) / 2 ); pad->m_Pos.x = pad->m_Pos0.x + Module->m_Pos.x; pad->m_Pos.y = pad->m_Pos0.y + Module->m_Pos.y; RotatePoint( &pad->m_Pos.x, &pad->m_Pos.y, Module->m_Pos.x, Module->m_Pos.y, Module->m_Orient ); next_pad->m_Size.x = next_pad->m_Size.y = GetBoard()->GetCurrentTrackWidth(); next_pad->m_Pos0.y = 0; next_pad->m_Pos0.x = oX + gap_size + next_pad->m_Size.x; next_pad->m_Pos.x = next_pad->m_Pos0.x + Module->m_Pos.x; next_pad->m_Pos.y = next_pad->m_Pos0.y + Module->m_Pos.y; RotatePoint( &next_pad->m_Pos.x, &next_pad->m_Pos.y, Module->m_Pos.x, Module->m_Pos.y, Module->m_Orient ); Module->Draw( DrawPanel, DC, GR_OR ); }