/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2017 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef PROFILE #include #endif #include #include #include #include #include #include CONNECTIVITY_DATA::CONNECTIVITY_DATA() { m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_progressReporter = nullptr; } CONNECTIVITY_DATA::CONNECTIVITY_DATA( const std::vector& aItems ) { Build( aItems ); m_progressReporter = nullptr; } CONNECTIVITY_DATA::~CONNECTIVITY_DATA() { Clear(); } bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem ) { m_connAlgo->Add( aItem ); return true; } bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); return true; } bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); m_connAlgo->Add( aItem ); return true; } void CONNECTIVITY_DATA::Build( BOARD* aBoard ) { m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_connAlgo->Build( aBoard ); RecalculateRatsnest(); } void CONNECTIVITY_DATA::Build( const std::vector& aItems ) { m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_connAlgo->Build( aItems ); RecalculateRatsnest(); } void CONNECTIVITY_DATA::updateRatsnest() { #ifdef PROFILE PROF_COUNTER rnUpdate( "update-ratsnest" ); #endif std::vector dirty_nets; // Start with net 1 as net 0 is reserved for not-connected // Nets without nodes are also ignored std::copy_if( m_nets.begin() + 1, m_nets.end(), std::back_inserter( dirty_nets ), [] ( RN_NET* aNet ) { return aNet->IsDirty() && aNet->GetNodeCount() > 0; } ); // We don't want to spin up a new thread for fewer than 8 nets (overhead costs) size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), ( dirty_nets.size() + 7 ) / 8 ); std::atomic nextNet( 0 ); std::vector> returns( parallelThreadCount ); auto update_lambda = [&nextNet, &dirty_nets]() -> size_t { for( size_t i = nextNet++; i < dirty_nets.size(); i = nextNet++ ) dirty_nets[i]->Update(); return 1; }; if( parallelThreadCount == 1 ) update_lambda(); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, update_lambda ); // Finalize the ratsnest threads for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii].wait(); } #ifdef PROFILE rnUpdate.Show(); #endif /* PROFILE */ } void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr& aCluster ) { auto rnNet = m_nets[ aCluster->OriginNet() ]; rnNet->AddCluster( aCluster ); } void CONNECTIVITY_DATA::RecalculateRatsnest() { m_connAlgo->PropagateNets(); int lastNet = m_connAlgo->NetCount(); if( lastNet >= (int) m_nets.size() ) { unsigned int prevSize = m_nets.size(); m_nets.resize( lastNet + 1 ); for( unsigned int i = prevSize; i < m_nets.size(); i++ ) m_nets[i] = new RN_NET; } auto clusters = m_connAlgo->GetClusters(); int dirtyNets = 0; for( int net = 0; net < lastNet; net++ ) { if( m_connAlgo->IsNetDirty( net ) ) { m_nets[net]->Clear(); dirtyNets++; } } for( auto c : clusters ) { int net = c->OriginNet(); if( m_connAlgo->IsNetDirty( net ) ) { addRatsnestCluster( c ); } } m_connAlgo->ClearDirtyFlags(); updateRatsnest(); } void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector& aItems ) { std::vector citems; for( auto item : aItems ) { if( item->Type() == PCB_MODULE_T ) { for( auto pad : static_cast(item)->Pads() ) citems.push_back( pad ); } else { citems.push_back( static_cast(item) ); } } for( auto item : citems ) { if ( m_connAlgo->ItemExists( item ) ) { auto& entry = m_connAlgo->ItemEntry( item ); for( auto cnItem : entry.GetItems() ) { for( auto anchor : cnItem->Anchors() ) anchor->SetNoLine( true ); } } } } int CONNECTIVITY_DATA::GetNetCount() const { return m_connAlgo->NetCount(); } void CONNECTIVITY_DATA::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector& aIslands ) { m_connAlgo->FindIsolatedCopperIslands( aZone, aIslands ); } void CONNECTIVITY_DATA::FindIsolatedCopperIslands( std::vector& aZones ) { m_connAlgo->FindIsolatedCopperIslands( aZones ); } void CONNECTIVITY_DATA::ComputeDynamicRatsnest( const std::vector& aItems ) { m_dynamicRatsnest.clear(); if( std::none_of( aItems.begin(), aItems.end(), []( const BOARD_ITEM* aItem ) { return( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_PAD_T || aItem->Type() == PCB_ZONE_AREA_T || aItem->Type() == PCB_MODULE_T || aItem->Type() == PCB_VIA_T ); } ) ) { return ; } CONNECTIVITY_DATA connData( aItems ); BlockRatsnestItems( aItems ); for( unsigned int nc = 1; nc < connData.m_nets.size(); nc++ ) { auto dynNet = connData.m_nets[nc]; if( dynNet->GetNodeCount() != 0 ) { auto ourNet = m_nets[nc]; CN_ANCHOR_PTR nodeA, nodeB; if( ourNet->NearestBicoloredPair( *dynNet, nodeA, nodeB ) ) { RN_DYNAMIC_LINE l; l.a = nodeA->Pos(); l.b = nodeB->Pos(); l.netCode = nc; m_dynamicRatsnest.push_back( l ); } } } for( auto net : connData.m_nets ) { if( !net ) continue; const auto& edges = net->GetUnconnected(); if( edges.empty() ) continue; for( const auto& edge : edges ) { const auto& nodeA = edge.GetSourceNode(); const auto& nodeB = edge.GetTargetNode(); RN_DYNAMIC_LINE l; l.a = nodeA->Pos(); l.b = nodeB->Pos(); l.netCode = 0; m_dynamicRatsnest.push_back( l ); } } } void CONNECTIVITY_DATA::ClearDynamicRatsnest() { m_connAlgo->ForEachAnchor( [] ( CN_ANCHOR& anchor ) { anchor.SetNoLine( false ); } ); HideDynamicRatsnest(); } void CONNECTIVITY_DATA::HideDynamicRatsnest() { m_dynamicRatsnest.clear(); } void CONNECTIVITY_DATA::PropagateNets() { m_connAlgo->PropagateNets(); } unsigned int CONNECTIVITY_DATA::GetUnconnectedCount() const { unsigned int unconnected = 0; for( auto net : m_nets ) { if( !net ) continue; const auto& edges = net->GetUnconnected(); if( edges.empty() ) continue; unconnected += edges.size(); } return unconnected; } void CONNECTIVITY_DATA::Clear() { for( auto net : m_nets ) delete net; m_nets.clear(); } const std::vector CONNECTIVITY_DATA::GetConnectedItems( const BOARD_CONNECTED_ITEM* aItem, const KICAD_T aTypes[] ) const { std::vector rv; const auto clusters = m_connAlgo->SearchClusters( CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK, aTypes, aItem->GetNetCode() ); for( auto cl : clusters ) { if( cl->Contains( aItem ) ) { for( const auto item : *cl ) { if( item->Valid() ) rv.push_back( item->Parent() ); } } } return rv; } const std::vector CONNECTIVITY_DATA::GetNetItems( int aNetCode, const KICAD_T aTypes[] ) const { std::set items; std::vector rv; m_connAlgo->ForEachItem( [&items, aNetCode, &aTypes] ( CN_ITEM& aItem ) { if( aItem.Valid() && ( aItem.Net() == aNetCode ) ) { KICAD_T itemType = aItem.Parent()->Type(); for( int i = 0; aTypes[i] > 0; ++i ) { wxASSERT( aTypes[i] < MAX_STRUCT_TYPE_ID ); if( itemType == aTypes[i] ) { items.insert( aItem.Parent() ); break; } } } } ); std::copy( items.begin(), items.end(), std::back_inserter( rv ) ); return rv; } bool CONNECTIVITY_DATA::CheckConnectivity( std::vector& aReport ) { RecalculateRatsnest(); for( auto net : m_nets ) { if( net ) { for( const auto& edge : net->GetEdges() ) { CN_DISJOINT_NET_ENTRY ent; ent.net = edge.GetSourceNode()->Parent()->GetNetCode(); ent.a = edge.GetSourceNode()->Parent(); ent.b = edge.GetTargetNode()->Parent(); ent.anchorA = edge.GetSourceNode()->Pos(); ent.anchorB = edge.GetTargetNode()->Pos(); aReport.push_back( ent ); } } } return aReport.empty(); } const std::vector CONNECTIVITY_DATA::GetConnectedTracks( const BOARD_CONNECTED_ITEM* aItem ) const { auto& entry = m_connAlgo->ItemEntry( aItem ); std::set tracks; std::vector rv; for( auto citem : entry.GetItems() ) { for( auto connected : citem->ConnectedItems() ) { if( connected->Valid() && ( connected->Parent()->Type() == PCB_TRACE_T || connected->Parent()->Type() == PCB_VIA_T ) ) tracks.insert( static_cast ( connected->Parent() ) ); } } std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) ); return rv; } const void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem, std::set* pads ) const { for( auto citem : m_connAlgo->ItemEntry( aItem ).GetItems() ) { for( auto connected : citem->ConnectedItems() ) { if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T ) pads->insert( static_cast ( connected->Parent() ) ); } } } const std::vector CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem ) const { std::set pads; std::vector rv; GetConnectedPads( aItem, &pads ); std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) ); return rv; } unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const { int sum = 0; if( aNet < 0 ) // Node count for all nets { for( const auto& net : m_nets ) sum += net->GetNodeCount(); } else if( aNet < (int) m_nets.size() ) { sum = m_nets[aNet]->GetNodeCount(); } return sum; } unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const { int n = 0; for( auto pad : m_connAlgo->ItemList() ) { if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T) continue; auto dpad = static_cast( pad->Parent() ); if( aNet < 0 || aNet == dpad->GetNetCode() ) { n++; } } return n; } const std::vector CONNECTIVITY_DATA::NearestUnconnectedTargets( const BOARD_CONNECTED_ITEM* aRef, const VECTOR2I& aPos, int aNet ) { CN_CLUSTER_PTR refCluster; int refNet = -1; if( aRef ) refNet = aRef->GetNetCode(); if( aNet >= 0 ) refNet = aNet; if( aRef ) { for( auto cl : m_connAlgo->GetClusters() ) { if( cl->Contains( aRef ) ) { refCluster = cl; break; } } } std::set anchors; for( auto cl : m_connAlgo->GetClusters() ) { if( cl != refCluster ) { for( auto item : *cl ) { if( item->Valid() && item->Parent()->GetNetCode() == refNet && item->Parent()->Type() != PCB_ZONE_AREA_T ) { for( auto anchor : item->Anchors() ) { anchors.insert( anchor->Pos() ); } } } } } std::vector rv; std::copy( anchors.begin(), anchors.end(), std::back_inserter( rv ) ); std::sort( rv.begin(), rv.end(), [aPos] ( const VECTOR2I& a, const VECTOR2I& b ) { auto da = (a - aPos).EuclideanNorm(); auto db = (b - aPos).EuclideanNorm(); return da < db; } ); return rv; } void CONNECTIVITY_DATA::GetUnconnectedEdges( std::vector& aEdges) const { for( auto rnNet : m_nets ) { if( rnNet ) { for( auto edge : rnNet->GetEdges() ) { aEdges.push_back( edge ); } } } } const std::vector CONNECTIVITY_DATA::GetConnectedItems( const BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aAnchor, KICAD_T aTypes[] ) { auto& entry = m_connAlgo->ItemEntry( aItem ); std::vector rv; for( auto cnItem : entry.GetItems() ) { for( auto anchor : cnItem->Anchors() ) { if( anchor->Pos() == aAnchor ) { for( int i = 0; aTypes[i] > 0; i++ ) { if( cnItem->Valid() && cnItem->Parent()->Type() == aTypes[i] ) { rv.push_back( cnItem->Parent() ); break; } } } } } return rv; } RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet ) { if ( aNet < 0 || aNet >= (int) m_nets.size() ) { return nullptr; } return m_nets[ aNet ]; } void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem ) { if (aItem->Type() == PCB_MODULE_T) { for ( auto pad : static_cast( aItem )->Pads() ) { m_connAlgo->MarkNetAsDirty( pad->GetNetCode() ); } } if (aItem->IsConnected() ) { m_connAlgo->MarkNetAsDirty( static_cast( aItem )->GetNetCode() ); } } void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; m_connAlgo->SetProgressReporter( m_progressReporter ); } const std::vector CONNECTIVITY_DATA::GetRatsnestForComponent( MODULE* aComponent, bool aSkipInternalConnections ) { std::set nets; std::set pads; std::vector edges; for( auto pad : aComponent->Pads() ) { nets.insert( pad->GetNetCode() ); pads.insert( pad ); } for ( auto netcode : nets ) { auto net = GetRatsnestForNet( netcode ); for ( auto edge : net->GetEdges() ) { auto srcNode = edge.GetSourceNode(); auto dstNode = edge.GetTargetNode(); auto srcParent = static_cast( srcNode->Parent() ); auto dstParent = static_cast( dstNode->Parent() ); bool srcFound = ( pads.find(srcParent) != pads.end() ); bool dstFound = ( pads.find(dstParent) != pads.end() ); if ( srcFound && dstFound && !aSkipInternalConnections ) { edges.push_back( edge ); } else if ( srcFound || dstFound ) { edges.push_back( edge ); } } } return edges; }