/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef __PNS_JOINT_H #define __PNS_JOINT_H #include #include #include "pns_item.h" #include "pns_segment.h" #include "pns_itemset.h" namespace PNS { /** * A 2D point on a given set of layers and belonging to a certain net, that links * together a number of board items. * * A hash table of joints is used by the router to follow connectivity between the items. */ class JOINT : public ITEM { public: typedef ITEM_SET::ENTRIES LINKED_ITEMS; ///< Joints are hashed by their position, layers and net. ///< Linked items are, obviously, not hashed. struct HASH_TAG { VECTOR2I pos; int net; }; struct JOINT_TAG_HASH { std::size_t operator()( const JOINT::HASH_TAG& aP ) const { using std::size_t; using std::hash; using std::string; return ( (hash()( aP.pos.x ) ^ (hash()( aP.pos.y ) << 1) ) >> 1 ) ^ (hash()( aP.net ) << 1); } }; JOINT() : ITEM( JOINT_T ), m_tag(), m_locked( false ) {} JOINT( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet = -1 ) : ITEM( JOINT_T ) { m_tag.pos = aPos; m_tag.net = aNet; m_layers = aLayers; m_locked = false; } JOINT( const JOINT& aB ) : ITEM( JOINT_T ) { m_layers = aB.m_layers; m_tag.pos = aB.m_tag.pos; m_tag.net = aB.m_tag.net; m_linkedItems = aB.m_linkedItems; m_layers = aB.m_layers; m_locked = aB.m_locked; } ITEM* Clone( ) const override { assert( false ); return nullptr; } /** * Checks if a joint connects two segments of the same net, layer, and width. * @param aAllowLockedSegs will consider joints between locked and unlocked segments as trivial * @return true if the joint is a trivial line corner */ bool IsLineCorner( bool aAllowLockedSegs = false ) const { if( m_linkedItems.Size() != 2 || m_linkedItems.Count( SEGMENT_T | ARC_T ) != 2 ) { if( !aAllowLockedSegs ) { return false; } // There will be multiple VVIAs on joints between two locked segments, because we // naively add a VVIA to each end of a locked segment. else if( ( m_linkedItems.Size() - m_linkedItems.Count( SEGMENT_T | ARC_T ) ) == m_linkedItems.Count( VIA_T ) ) { const VIA* via = nullptr; bool hasNonVirtualVia = false; for( const ITEM* item : m_linkedItems.CItems() ) { if( item->Kind() == VIA_T ) { via = static_cast( item ); hasNonVirtualVia = !via->IsVirtual(); if( hasNonVirtualVia ) break; } } assert( via ); if( !via || hasNonVirtualVia ) return false; } else { return false; } } auto seg1 = static_cast( m_linkedItems[0] ); auto seg2 = static_cast( m_linkedItems[1] ); // joints between segments of different widths are not considered trivial. return seg1->Width() == seg2->Width(); } bool IsNonFanoutVia() const { int vias = m_linkedItems.Count( VIA_T ); int segs = m_linkedItems.Count( SEGMENT_T ); segs += m_linkedItems.Count( ARC_T ); return ( m_linkedItems.Size() == 3 && vias == 1 && segs == 2 ); } bool IsStitchingVia() const { return ( m_linkedItems.Size() == 1 && m_linkedItems.Count( VIA_T ) == 1 ); } bool IsTraceWidthChange() const { if( m_linkedItems.Size() != 2 ) return false; if( m_linkedItems.Count( SEGMENT_T ) != 2) return false; SEGMENT* seg1 = static_cast( m_linkedItems[0] ); SEGMENT* seg2 = static_cast( m_linkedItems[1] ); return seg1->Width() != seg2->Width(); } ///< Link the joint to a given board item (when it's added to the NODE). void Link( ITEM* aItem ) { if( m_linkedItems.Contains( aItem ) ) return; m_linkedItems.Add( aItem ); } ///< Unlink a given board item from the joint (upon its removal from a NODE) ///< @return true if the joint became dangling after unlinking. bool Unlink( ITEM* aItem ) { m_linkedItems.Erase( aItem ); return m_linkedItems.Size() == 0; } ///< For trivial joints, return the segment adjacent to (aCurrent). For non-trival ones, ///< return NULL, indicating the end of line. LINKED_ITEM* NextSegment( ITEM* aCurrent, bool aAllowLockedSegs = false ) const { if( !IsLineCorner( aAllowLockedSegs ) ) return nullptr; return static_cast( m_linkedItems[m_linkedItems[0] == aCurrent ? 1 : 0] ); } VIA* Via() { for( ITEM* item : m_linkedItems.Items() ) { if( item->OfKind( VIA_T ) ) return static_cast( item ); } return nullptr; } /// trivial accessors const HASH_TAG& Tag() const { return m_tag; } const VECTOR2I& Pos() const { return m_tag.pos; } int Net() const { return m_tag.net; } const LINKED_ITEMS& LinkList() const { return m_linkedItems.CItems(); } const ITEM_SET& CLinks() const { return m_linkedItems; } ITEM_SET& Links() { return m_linkedItems; } int LinkCount( int aMask = -1 ) const { return m_linkedItems.Count( aMask ); } void Dump() const; bool operator==( const JOINT& rhs ) const { return m_tag.pos == rhs.m_tag.pos && m_tag.net == rhs.m_tag.net; } void Merge( const JOINT& aJoint ) { if( !Overlaps( aJoint ) ) return; m_layers.Merge( aJoint.m_layers ); if( aJoint.IsLocked() ) m_locked = true; for( ITEM* item : aJoint.LinkList() ) { m_linkedItems.Add( item ); } } bool Overlaps( const JOINT& rhs ) const { return m_tag.pos == rhs.m_tag.pos && m_tag.net == rhs.m_tag.net && m_layers.Overlaps( rhs.m_layers ); } void Lock( bool aLock = true ) { m_locked = aLock; } bool IsLocked() const { return m_locked; } private: ///< hash tag for unordered_multimap HASH_TAG m_tag; ///< list of items linked to this joint ITEM_SET m_linkedItems; ///< locked (non-movable) flag bool m_locked; }; inline bool operator==( JOINT::HASH_TAG const& aP1, JOINT::HASH_TAG const& aP2 ) { return aP1.pos == aP2.pos && aP1.net == aP2.net; } } #endif // __PNS_JOINT_H