/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file round_segment_3d.cpp */ #include "round_segment_3d.h" #include "../shapes2D/round_segment_2d.h" ROUND_SEGMENT::ROUND_SEGMENT( const ROUND_SEGMENT_2D& aSeg2D, float aZmin, float aZmax ) : OBJECT_3D( OBJECT_3D_TYPE::ROUNDSEG ), m_segment( aSeg2D.m_segment ) { m_radius = aSeg2D.GetRadius(); m_radius_squared = m_radius * m_radius; m_inv_radius = 1.0f / m_radius; m_plane_dir_left = SFVEC3F( -m_segment.m_Dir.y, m_segment.m_Dir.x, 0.0f ); m_plane_dir_right = SFVEC3F( m_segment.m_Dir.y, -m_segment.m_Dir.x, 0.0f ); m_bbox.Reset(); m_bbox.Set( SFVEC3F( m_segment.m_Start.x, m_segment.m_Start.y, aZmin ), SFVEC3F( m_segment.m_End.x, m_segment.m_End.y, aZmax ) ); m_bbox.Set( m_bbox.Min() - SFVEC3F( m_radius, m_radius, 0.0f ), m_bbox.Max() + SFVEC3F( m_radius, m_radius, 0.0f ) ); m_bbox.ScaleNextUp(); m_centroid = m_bbox.GetCenter(); m_center_left = m_centroid + m_plane_dir_left * m_radius; m_center_right = m_centroid + m_plane_dir_right * m_radius; m_seglen_over_two_squared = ( m_segment.m_Length / 2.0f ) * ( m_segment.m_Length / 2.0f ); } bool ROUND_SEGMENT::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const { // Top / Bottom plane float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z; float tPlane = ( zPlanePos - aRay.m_Origin.z ) * aRay.m_InvDir.z; if( ( tPlane >= aHitInfo.m_tHit ) || ( tPlane < FLT_EPSILON ) ) return false; // Early exit SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane, aRay.m_Origin.y + aRay.m_Dir.y * tPlane ); float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d ); if( dSquared <= m_radius_squared ) { if( tPlane < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tPlane; aHitInfo.m_HitPoint = SFVEC3F( planeHitPoint2d.x, planeHitPoint2d.y, aRay.m_Origin.z + aRay.m_Dir.z * tPlane ); aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, aRay.m_dirIsNeg[2] ? 1.0f : -1.0f ); aHitInfo.pHitObject = this; m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); return true; } return false; } // Test LEFT / RIGHT plane float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir ); if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane { const float n_dot_ray_origin = glm::dot( m_plane_dir_right, m_center_right - aRay.m_Origin ); const float t = n_dot_ray_origin / normal_dot_ray; if( t > 0.0f ) { const SFVEC3F hitP = aRay.at( t ); const SFVEC3F v = hitP - m_center_right; const float len = glm::dot( v, v ); if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) ) { if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; aHitInfo.m_HitPoint = hitP; aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_right.x, m_plane_dir_right.y, 0.0f ); aHitInfo.pHitObject = this; m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); return true; } return false; } } } else { normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir ); if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane { const float n_dot_ray_origin = glm::dot( m_plane_dir_left, m_center_left - aRay.m_Origin ); const float t = n_dot_ray_origin / normal_dot_ray; if( t > 0.0f ) { const SFVEC3F hitP = aRay.at( t ); const SFVEC3F v = hitP - m_center_left; const float len = glm::dot( v, v ); if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) ) { if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; aHitInfo.m_HitPoint = hitP; aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_left.x, m_plane_dir_left.y, 0.0f ); aHitInfo.pHitObject = this; m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); return true; } return false; } } } } // Based on: http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp // Ray-sphere intersection: geometric const double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x; const double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y; const double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start; const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x + (double)aRay.m_Dir.y * (double)aRay.m_Dir.y; const double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start + (double)aRay.m_Dir.y * (double)OCy_Start; const double c_Start = p_dot_p_Start - m_radius_squared; const float delta_Start = (float) ( b_Start * b_Start - a * c_Start ); if( delta_Start > FLT_EPSILON ) { const float sdelta = sqrtf( delta_Start ); const float t = ( -b_Start - sdelta ) / a; const float z = aRay.m_Origin.z + t * aRay.m_Dir.z; if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) ) { if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; aHitInfo.m_HitPoint = aRay.at( t ); const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x, aHitInfo.m_HitPoint.y ); aHitInfo.m_HitNormal = SFVEC3F( ( hitPoint2D.x - m_segment.m_Start.x ) * m_inv_radius, ( hitPoint2D.y - m_segment.m_Start.y ) * m_inv_radius, 0.0f ); aHitInfo.pHitObject = this; m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); return true; } return false; } } const double OCx_End = aRay.m_Origin.x - m_segment.m_End.x; const double OCy_End = aRay.m_Origin.y - m_segment.m_End.y; const double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End; const double b_End = (double)aRay.m_Dir.x * (double)OCx_End + (double)aRay.m_Dir.y * (double)OCy_End; const double c_End = p_dot_p_End - m_radius_squared; const float delta_End = (float)(b_End * b_End - a * c_End); if( delta_End > FLT_EPSILON ) { const float sdelta = sqrtf( delta_End ); const float t = ( -b_End - sdelta ) / a; const float z = aRay.m_Origin.z + t * aRay.m_Dir.z; if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) ) { if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; aHitInfo.m_HitPoint = aRay.at( t ); const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x, aHitInfo.m_HitPoint.y ); aHitInfo.m_HitNormal = SFVEC3F( ( hitPoint2D.x - m_segment.m_End.x ) * m_inv_radius, ( hitPoint2D.y - m_segment.m_End.y ) * m_inv_radius, 0.0f ); aHitInfo.pHitObject = this; m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo ); return true; } return false; } } return false; } bool ROUND_SEGMENT::IntersectP( const RAY& aRay, float aMaxDistance ) const { // Top / Bottom plane const float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z; const float tPlane = ( zPlanePos - aRay.m_Origin.z ) * aRay.m_InvDir.z; if( ( tPlane >= aMaxDistance) || ( tPlane < FLT_EPSILON ) ) return false; // Early exit const SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane, aRay.m_Origin.y + aRay.m_Dir.y * tPlane ); const float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d ); if( dSquared <= m_radius_squared ) { if( tPlane < aMaxDistance ) return true; return false; } // Since the IntersectP is used for shadows, we are simplifying the test // intersection and only consider the top/bottom plane of the segment return false; /// @todo Either fix the code below or get rid of it. #if 0 // Test LEFT / RIGHT plane float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir ); if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane { float n_dot_ray_origin = glm::dot( m_plane_dir_right, m_center_right - aRay.m_Origin ); float t = n_dot_ray_origin / normal_dot_ray; if( t > 0.0f ) { SFVEC3F hitP = aRay.at( t ); SFVEC3F v = hitP - m_center_right; float len = glm::dot( v, v ); if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) ) { if( t < aMaxDistance ) return true; return false; } } } else { normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir ); if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane { const float n_dot_ray_origin = glm::dot( m_plane_dir_left, m_center_left - aRay.m_Origin ); const float t = n_dot_ray_origin / normal_dot_ray; if( t > 0.0f ) { SFVEC3F hitP = aRay.at( t ); SFVEC3F v = hitP - m_center_left; float len = glm::dot( v, v ); if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) ) { if( t < aMaxDistance ) return true; return false; } } } } // Based on: http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp // Ray-sphere intersection: geometric double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x; double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y; double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start; double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x + (double)aRay.m_Dir.y * (double)aRay.m_Dir.y; double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start + (double)aRay.m_Dir.y * (double)OCy_Start; double c_Start = p_dot_p_Start - m_radius_squared; float delta_Start = (float)(b_Start * b_Start - a * c_Start); if( delta_Start > FLT_EPSILON ) { float sdelta = sqrtf( delta_Start ); float t = (-b_Start - sdelta) / a; float z = aRay.m_Origin.z + t * aRay.m_Dir.z; if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) ) { if( t < aMaxDistance ) return true; return false; } } double OCx_End = aRay.m_Origin.x - m_segment.m_End.x; double OCy_End = aRay.m_Origin.y - m_segment.m_End.y; double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End; double b_End = (double)aRay.m_Dir.x * (double)OCx_End + (double)aRay.m_Dir.y * (double)OCy_End; double c_End = p_dot_p_End - m_radius_squared; float delta_End = (float)(b_End * b_End - a * c_End); if( delta_End > FLT_EPSILON ) { float sdelta = sqrtf( delta_End ); float t = ( -b_End - sdelta ) / a; float z = aRay.m_Origin.z + t * aRay.m_Dir.z; if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) ) { if( t < aMaxDistance ) return true; return false; } } return false; #endif } bool ROUND_SEGMENT::Intersects( const BBOX_3D& aBBox ) const { //!TODO: improve return m_bbox.Intersects( aBBox ); } SFVEC3F ROUND_SEGMENT::GetDiffuseColor( const HITINFO& /* aHitInfo */ ) const { return m_diffusecolor; }