/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ZONE::ZONE( BOARD_ITEM_CONTAINER* aParent, bool aInFP ) : BOARD_CONNECTED_ITEM( aParent, aInFP ? PCB_FP_ZONE_T : PCB_ZONE_T ), m_area( 0.0 ) { m_CornerSelection = nullptr; // no corner is selected m_isFilled = false; // fill status : true when the zone is filled m_teardropType = TEARDROP_TYPE::TD_NONE; m_borderStyle = ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE; m_borderHatchPitch = GetDefaultHatchPitch(); m_priority = 0; SetIsRuleArea( aInFP ); // Zones living in footprints have the rule area option SetLocalFlags( 0 ); // flags temporary used in zone calculations m_Poly = new SHAPE_POLY_SET(); // Outlines m_fillVersion = 5; // set the "old" way to build filled polygon areas (< 6.0.x) aParent->GetZoneSettings().ExportSetting( *this ); m_ZoneMinThickness = Mils2iu( ZONE_THICKNESS_MIL ); m_thermalReliefSpokeWidth = Mils2iu( ZONE_THERMAL_RELIEF_COPPER_WIDTH_MIL ); m_thermalReliefGap = Mils2iu( ZONE_THERMAL_RELIEF_GAP_MIL ); m_needRefill = false; // True only after edits. } ZONE::ZONE( const ZONE& aZone ) : BOARD_CONNECTED_ITEM( aZone ), m_Poly( nullptr ), m_CornerSelection( nullptr ) { InitDataFromSrcInCopyCtor( aZone ); } ZONE& ZONE::operator=( const ZONE& aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); InitDataFromSrcInCopyCtor( aOther ); return *this; } ZONE::~ZONE() { delete m_Poly; delete m_CornerSelection; } void ZONE::InitDataFromSrcInCopyCtor( const ZONE& aZone ) { // members are expected non initialize in this. // InitDataFromSrcInCopyCtor() is expected to be called // only from a copy constructor. // Copy only useful EDA_ITEM flags: m_flags = aZone.m_flags; m_forceVisible = aZone.m_forceVisible; // Replace the outlines for aZone outlines. delete m_Poly; m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly ); m_cornerSmoothingType = aZone.m_cornerSmoothingType; m_cornerRadius = aZone.m_cornerRadius; m_zoneName = aZone.m_zoneName; m_priority = aZone.m_priority; m_isRuleArea = aZone.m_isRuleArea; SetLayerSet( aZone.GetLayerSet() ); m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour; m_doNotAllowVias = aZone.m_doNotAllowVias; m_doNotAllowTracks = aZone.m_doNotAllowTracks; m_doNotAllowPads = aZone.m_doNotAllowPads; m_doNotAllowFootprints = aZone.m_doNotAllowFootprints; m_PadConnection = aZone.m_PadConnection; m_ZoneClearance = aZone.m_ZoneClearance; // clearance value m_ZoneMinThickness = aZone.m_ZoneMinThickness; m_fillVersion = aZone.m_fillVersion; m_islandRemovalMode = aZone.m_islandRemovalMode; m_minIslandArea = aZone.m_minIslandArea; m_isFilled = aZone.m_isFilled; m_needRefill = aZone.m_needRefill; m_teardropType = aZone.m_teardropType; m_thermalReliefGap = aZone.m_thermalReliefGap; m_thermalReliefSpokeWidth = aZone.m_thermalReliefSpokeWidth; m_fillMode = aZone.m_fillMode; // solid vs. hatched m_hatchThickness = aZone.m_hatchThickness; m_hatchGap = aZone.m_hatchGap; m_hatchOrientation = aZone.m_hatchOrientation; m_hatchSmoothingLevel = aZone.m_hatchSmoothingLevel; m_hatchSmoothingValue = aZone.m_hatchSmoothingValue; m_hatchBorderAlgorithm = aZone.m_hatchBorderAlgorithm; m_hatchHoleMinArea = aZone.m_hatchHoleMinArea; // For corner moving, corner index to drag, or nullptr if no selection delete m_CornerSelection; m_CornerSelection = nullptr; for( PCB_LAYER_ID layer : aZone.GetLayerSet().Seq() ) { m_FilledPolysList[layer] = aZone.m_FilledPolysList.at( layer ); m_RawPolysList[layer] = aZone.m_RawPolysList.at( layer ); m_filledPolysHash[layer] = aZone.m_filledPolysHash.at( layer ); m_FillSegmList[layer] = aZone.m_FillSegmList.at( layer ); // vector <> copy m_insulatedIslands[layer] = aZone.m_insulatedIslands.at( layer ); } m_borderStyle = aZone.m_borderStyle; m_borderHatchPitch = aZone.m_borderHatchPitch; m_borderHatchLines = aZone.m_borderHatchLines; SetLocalFlags( aZone.GetLocalFlags() ); m_netinfo = aZone.m_netinfo; m_hv45 = aZone.m_hv45; m_area = aZone.m_area; } EDA_ITEM* ZONE::Clone() const { return new ZONE( *this ); } bool ZONE::UnFill() { bool change = false; for( std::pair& pair : m_FilledPolysList ) { change |= !pair.second.IsEmpty(); m_insulatedIslands[pair.first].clear(); pair.second.RemoveAllContours(); } for( std::pair >& pair : m_FillSegmList ) { change |= !pair.second.empty(); pair.second.clear(); } m_isFilled = false; m_fillFlags.clear(); return change; } VECTOR2I ZONE::GetPosition() const { return GetCornerPosition( 0 ); } PCB_LAYER_ID ZONE::GetLayer() const { return BOARD_ITEM::GetLayer(); } bool ZONE::IsOnCopperLayer() const { return ( m_layerSet & LSET::AllCuMask() ).count() > 0; } bool ZONE::CommonLayerExists( const LSET aLayerSet ) const { LSET common = GetLayerSet() & aLayerSet; return common.count() > 0; } void ZONE::SetLayer( PCB_LAYER_ID aLayer ) { SetLayerSet( LSET( aLayer ) ); m_layer = aLayer; } void ZONE::SetLayerSet( LSET aLayerSet ) { if( GetIsRuleArea() ) { // Rule areas can only exist on copper layers aLayerSet &= LSET::AllCuMask(); } if( aLayerSet.count() == 0 ) return; if( m_layerSet != aLayerSet ) { SetNeedRefill( true ); UnFill(); m_FillSegmList.clear(); m_FilledPolysList.clear(); m_RawPolysList.clear(); m_filledPolysHash.clear(); m_insulatedIslands.clear(); for( PCB_LAYER_ID layer : aLayerSet.Seq() ) { m_FillSegmList[layer] = {}; m_FilledPolysList[layer] = {}; m_RawPolysList[layer] = {}; m_filledPolysHash[layer] = {}; m_insulatedIslands[layer] = {}; } } m_layerSet = aLayerSet; // Set the single layer parameter. For zones that can be on many layers, this parameter // is arbitrary at best, but some code still uses it. // Priority is F_Cu then B_Cu then to the first selected layer m_layer = aLayerSet.Seq()[0]; if( m_layer != F_Cu && aLayerSet[B_Cu] ) m_layer = B_Cu; } LSET ZONE::GetLayerSet() const { return m_layerSet; } void ZONE::ViewGetLayers( int aLayers[], int& aCount ) const { LSEQ layers = m_layerSet.Seq(); for( unsigned int idx = 0; idx < layers.size(); idx++ ) aLayers[idx] = LAYER_ZONE_START + layers[idx]; aCount = layers.size(); } double ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits::max(); return aView->IsLayerVisible( LAYER_ZONES ) ? 0.0 : HIDE; } bool ZONE::IsOnLayer( PCB_LAYER_ID aLayer ) const { return m_layerSet.test( aLayer ); } const EDA_RECT ZONE::GetBoundingBox() const { BOX2I bb = m_Poly->BBox(); EDA_RECT ret( bb.GetOrigin(), VECTOR2I( bb.GetWidth(), bb.GetHeight() ) ); return ret; } int ZONE::GetThermalReliefGap( PAD* aPad, wxString* aSource ) const { if( aPad->GetLocalThermalGapOverride() == 0 ) { if( aSource ) *aSource = _( "zone" ); return m_thermalReliefGap; } return aPad->GetLocalThermalGapOverride( aSource ); } void ZONE::SetCornerRadius( unsigned int aRadius ) { if( m_cornerRadius != aRadius ) SetNeedRefill( true ); m_cornerRadius = aRadius; } bool ZONE::GetFilledPolysUseThickness( PCB_LAYER_ID aLayer ) const { if( ADVANCED_CFG::GetCfg().m_DebugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) return false; return GetFilledPolysUseThickness(); } static SHAPE_POLY_SET g_nullPoly; MD5_HASH ZONE::GetHashValue( PCB_LAYER_ID aLayer ) { if( !m_filledPolysHash.count( aLayer ) ) return g_nullPoly.GetHash(); else return m_filledPolysHash.at( aLayer ); } void ZONE::BuildHashValue( PCB_LAYER_ID aLayer ) { if( !m_FilledPolysList.count( aLayer ) ) m_filledPolysHash[aLayer] = g_nullPoly.GetHash(); else m_filledPolysHash[aLayer] = m_FilledPolysList.at( aLayer ).GetHash(); } bool ZONE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { // When looking for an "exact" hit aAccuracy will be 0 which works poorly for very thin // lines. Give it a floor. int accuracy = std::max( aAccuracy, Millimeter2iu( 0.1 ) ); return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy ); } void ZONE::SetSelectedCorner( const VECTOR2I& aPosition, int aAccuracy ) { SHAPE_POLY_SET::VERTEX_INDEX corner; // If there is some corner to be selected, assign it to m_CornerSelection if( HitTestForCorner( aPosition, aAccuracy * 2, corner ) || HitTestForEdge( aPosition, aAccuracy, corner ) ) { if( m_CornerSelection == nullptr ) m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX; *m_CornerSelection = corner; } } bool ZONE::HitTestForCorner( const VECTOR2I& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE::HitTestForCorner( const VECTOR2I& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForCorner( refPos, aAccuracy, dummy ); } bool ZONE::HitTestForEdge( const VECTOR2I& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE::HitTestForEdge( const VECTOR2I& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForEdge( refPos, aAccuracy, dummy ); } bool ZONE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { // Calculate bounding box for zone EDA_RECT bbox = GetBoundingBox(); bbox.Normalize(); EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; int count = m_Poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { auto vertex = m_Poly->CVertex( ii ); auto vertexNext = m_Poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within the rect if( arect.Contains( vertex ) ) return true; // Test if this edge intersects the rect if( arect.Intersects( vertex, vertexNext ) ) return true; } return false; } } int ZONE::GetLocalClearance( wxString* aSource ) const { if( m_isRuleArea ) return 0; if( aSource ) *aSource = _( "zone" ); return m_ZoneClearance; } bool ZONE::HitTestFilledArea( PCB_LAYER_ID aLayer, const VECTOR2I& aRefPos, int aAccuracy ) const { // Rule areas have no filled area, but it's generally nice to treat their interior as if it were // filled so that people don't have to select them by their outline (which is min-width) if( GetIsRuleArea() ) return m_Poly->Contains( VECTOR2I( aRefPos.x, aRefPos.y ), -1, aAccuracy ); if( !m_FilledPolysList.count( aLayer ) ) return false; return m_FilledPolysList.at( aLayer ).Contains( VECTOR2I( aRefPos.x, aRefPos.y ), -1, aAccuracy ); } bool ZONE::HitTestCutout( const VECTOR2I& aRefPos, int* aOutlineIdx, int* aHoleIdx ) const { // Iterate over each outline polygon in the zone and then iterate over // each hole it has to see if the point is in it. for( int i = 0; i < m_Poly->OutlineCount(); i++ ) { for( int j = 0; j < m_Poly->HoleCount( i ); j++ ) { if( m_Poly->Hole( i, j ).PointInside( aRefPos ) ) { if( aOutlineIdx ) *aOutlineIdx = i; if( aHoleIdx ) *aHoleIdx = j; return true; } } } return false; } void ZONE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); wxString msg; if( GetIsRuleArea() ) msg = _( "Rule Area" ); else if( IsOnCopperLayer() ) msg = _( "Copper Zone" ); else msg = _( "Non-copper Zone" ); // Display Cutout instead of Outline for holes inside a zone (i.e. when num contour !=0). // Check whether the selected corner is in a hole; i.e., in any contour but the first one. if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) msg << wxT( " " ) << _( "Cutout" ); aList.emplace_back( _( "Type" ), msg ); if( GetIsRuleArea() ) { msg.Empty(); if( GetDoNotAllowVias() ) AccumulateDescription( msg, _( "No vias" ) ); if( GetDoNotAllowTracks() ) AccumulateDescription( msg, _( "No tracks" ) ); if( GetDoNotAllowPads() ) AccumulateDescription( msg, _( "No pads" ) ); if( GetDoNotAllowCopperPour() ) AccumulateDescription( msg, _( "No copper zones" ) ); if( GetDoNotAllowFootprints() ) AccumulateDescription( msg, _( "No footprints" ) ); if( !msg.IsEmpty() ) aList.emplace_back( MSG_PANEL_ITEM( _( "Restrictions" ), msg ) ); } else if( IsOnCopperLayer() ) { if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Net Class" ), UnescapeString( GetNetClass()->GetName() ) ); } // Display priority level aList.emplace_back( _( "Priority" ), wxString::Format( wxT( "%d" ), GetPriority() ) ); } if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } wxString layerDesc; int count = 0; for( PCB_LAYER_ID layer : m_layerSet.Seq() ) { if( count == 0 ) layerDesc = GetBoard()->GetLayerName( layer ); count++; } if( count > 1 ) layerDesc.Printf( _( "%s and %d more" ), layerDesc, count - 1 ); aList.emplace_back( _( "Layer" ), layerDesc ); if( !m_zoneName.empty() ) aList.emplace_back( _( "Name" ), m_zoneName ); switch( m_fillMode ) { case ZONE_FILL_MODE::POLYGONS: msg = _( "Solid" ); break; case ZONE_FILL_MODE::HATCH_PATTERN: msg = _( "Hatched" ); break; default: msg = _( "Unknown" ); break; } aList.emplace_back( _( "Fill Mode" ), msg ); msg = MessageTextFromValue( units, m_area, true, EDA_DATA_TYPE::AREA ); aList.emplace_back( _( "Filled Area" ), msg ); wxString source; int clearance = GetOwnClearance( GetLayer(), &source ); if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), MessageTextFromValue( units, clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } // Useful for statistics, especially when zones are complex the number of hatches // and filled polygons can explain the display and DRC calculation time: msg.Printf( wxT( "%d" ), (int) m_borderHatchLines.size() ); aList.emplace_back( MSG_PANEL_ITEM( _( "HatchBorder Lines" ), msg ) ); PCB_LAYER_ID layer = m_layer; if( dynamic_cast( aFrame->GetScreen() ) ) layer = dynamic_cast( aFrame->GetScreen() )->m_Active_Layer; if( !GetIsRuleArea() ) { auto layer_it = m_FilledPolysList.find( layer ); if( layer_it == m_FilledPolysList.end() ) layer_it = m_FilledPolysList.begin(); if( layer_it != m_FilledPolysList.end() ) { msg.Printf( wxT( "%d" ), layer_it->second.TotalVertices() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg ) ); } } } void ZONE::Move( const VECTOR2I& offset ) { /* move outlines */ m_Poly->Move( offset ); HatchBorder(); for( std::pair& pair : m_FilledPolysList ) pair.second.Move( offset ); for( std::pair >& pair : m_FillSegmList ) { for( SEG& seg : pair.second ) { seg.A += offset; seg.B += offset; } } } void ZONE::MoveEdge( const VECTOR2I& offset, int aEdge ) { int next_corner; if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) ) { m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) ); m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) ); HatchBorder(); SetNeedRefill( true ); } } void ZONE::Rotate( const VECTOR2I& aCentre, const EDA_ANGLE& aAngle ) { m_Poly->Rotate( aAngle, VECTOR2I( aCentre ) ); HatchBorder(); /* rotate filled areas: */ for( std::pair& pair : m_FilledPolysList ) pair.second.Rotate( aAngle, aCentre ); for( std::pair >& pair : m_FillSegmList ) { for( SEG& seg : pair.second ) { VECTOR2I a( seg.A ); RotatePoint( a, aCentre, -aAngle ); seg.A = a; VECTOR2I b( seg.B ); RotatePoint( b, aCentre, -aAngle ); seg.B = a; } } } void ZONE::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { Mirror( aCentre, aFlipLeftRight ); int copperLayerCount = GetBoard()->GetCopperLayerCount(); if( GetIsRuleArea() ) SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) ); else SetLayer( FlipLayer( GetLayer(), copperLayerCount ) ); } void ZONE::Mirror( const VECTOR2I& aMirrorRef, bool aMirrorLeftRight ) { // ZONEs mirror about the x-axis (why?!?) m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef ); HatchBorder(); for( std::pair& pair : m_FilledPolysList ) pair.second.Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef ); for( std::pair >& pair : m_FillSegmList ) { for( SEG& seg : pair.second ) { if( aMirrorLeftRight ) { MIRROR( seg.A.x, aMirrorRef.x ); MIRROR( seg.B.x, aMirrorRef.x ); } else { MIRROR( seg.A.y, aMirrorRef.y ); MIRROR( seg.B.y, aMirrorRef.y ); } } } } void ZONE::RemoveCutout( int aOutlineIdx, int aHoleIdx ) { // Ensure the requested cutout is valid if( m_Poly->OutlineCount() < aOutlineIdx || m_Poly->HoleCount( aOutlineIdx ) < aHoleIdx ) return; SHAPE_POLY_SET cutPoly( m_Poly->Hole( aOutlineIdx, aHoleIdx ) ); // Add the cutout back to the zone m_Poly->BooleanAdd( cutPoly, SHAPE_POLY_SET::PM_FAST ); SetNeedRefill( true ); } void ZONE::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { wxASSERT( aPolygon.IsClosed() ); // Add the outline as a new polygon in the polygon set if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( aPolygon ); else m_Poly->AddHole( aPolygon ); SetNeedRefill( true ); } void ZONE::AddPolygon( std::vector& aPolygon ) { if( aPolygon.empty() ) return; SHAPE_LINE_CHAIN outline; // Create an outline and populate it with the points of aPolygon for( const VECTOR2I& pt : aPolygon ) outline.Append( pt ); outline.SetClosed( true ); AddPolygon( outline ); } bool ZONE::AppendCorner( VECTOR2I aPosition, int aHoleIdx, bool aAllowDuplication ) { // Ensure the main outline exists: if( m_Poly->OutlineCount() == 0 ) m_Poly->NewOutline(); // If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx. // (remember: the index of the first hole is 0) // Return error if if does dot exist. if( aHoleIdx >= m_Poly->HoleCount( 0 ) ) return false; m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication ); SetNeedRefill( true ); return true; } wxString ZONE::GetSelectMenuText( EDA_UNITS aUnits ) const { wxString layerDesc; int count = 0; for( PCB_LAYER_ID layer : m_layerSet.Seq() ) { if( count == 0 ) layerDesc = GetBoard()->GetLayerName( layer ); count++; } if( count > 1 ) layerDesc.Printf( _( "%s and %d more" ), layerDesc, count - 1 ); // Check whether the selected contour is a hole (contour index > 0) if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) { if( GetIsRuleArea() ) return wxString::Format( _( "Rule Area Cutout on %s" ), layerDesc ); else return wxString::Format( _( "Zone Cutout on %s" ), layerDesc ); } else { if( GetIsRuleArea() ) return wxString::Format( _( "Rule Area on %s" ), layerDesc ); else return wxString::Format( _( "Zone %s on %s" ), GetNetnameMsg(), layerDesc ); } } int ZONE::GetBorderHatchPitch() const { return m_borderHatchPitch; } void ZONE::SetBorderDisplayStyle( ZONE_BORDER_DISPLAY_STYLE aHatchStyle, int aHatchPitch, bool aRebuildHatch ) { SetHatchPitch( aHatchPitch ); m_borderStyle = aHatchStyle; if( aRebuildHatch ) HatchBorder(); } void ZONE::SetHatchPitch( int aPitch ) { m_borderHatchPitch = aPitch; } void ZONE::UnHatchBorder() { m_borderHatchLines.clear(); } // Creates hatch lines inside the outline of the complex polygon // sort function used in ::HatchBorder to sort points by descending VECTOR2I.x values bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst ) { return tst.x < ref.x; } void ZONE::HatchBorder() { UnHatchBorder(); if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::NO_HATCH || m_borderHatchPitch == 0 || m_Poly->IsEmpty() ) { return; } // define range for hatch lines int min_x = m_Poly->CVertex( 0 ).x; int max_x = m_Poly->CVertex( 0 ).x; int min_y = m_Poly->CVertex( 0 ).y; int max_y = m_Poly->CVertex( 0 ).y; for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( iterator->x < min_x ) min_x = iterator->x; if( iterator->x > max_x ) max_x = iterator->x; if( iterator->y < min_y ) min_y = iterator->y; if( iterator->y > max_y ) max_y = iterator->y; } // Calculate spacing between 2 hatch lines int spacing; if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE ) spacing = m_borderHatchPitch; else spacing = m_borderHatchPitch * 2; // set the "length" of hatch lines (the length on horizontal axis) int hatch_line_len = m_borderHatchPitch; // To have a better look, give a slope depending on the layer int layer = GetLayer(); int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1 double slope = 0.707106 * slope_flag; // 45 degrees slope int max_a, min_a; if( slope_flag == 1 ) { max_a = KiROUND( max_y - slope * min_x ); min_a = KiROUND( min_y - slope * max_x ); } else { max_a = KiROUND( max_y - slope * max_x ); min_a = KiROUND( min_y - slope * min_x ); } min_a = (min_a / spacing) * spacing; // calculate an offset depending on layer number, // for a better look of hatches on a multilayer board int offset = (layer * 7) / 8; min_a += offset; // loop through hatch lines #define MAXPTS 200 // Usually we store only few values per one hatch line // depending on the complexity of the zone outline static std::vector pointbuffer; pointbuffer.clear(); pointbuffer.reserve( MAXPTS + 2 ); for( int a = min_a; a < max_a; a += spacing ) { // get intersection points for this hatch line // Note: because we should have an even number of intersections with the // current hatch line and the zone outline (a closed polygon, // or a set of closed polygons), if an odd count is found // we skip this line (should not occur) pointbuffer.clear(); // Iterate through all vertices for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { double x, y; bool ok; SEG segment = *iterator; ok = FindLineSegmentIntersection( a, slope, segment.A.x, segment.A.y, segment.B.x, segment.B.y, x, y ); if( ok ) { VECTOR2I point( KiROUND( x ), KiROUND( y ) ); pointbuffer.push_back( point ); } if( pointbuffer.size() >= MAXPTS ) // overflow { wxASSERT( 0 ); break; } } // ensure we have found an even intersection points count // because intersections are the ends of segments // inside the polygon(s) and a segment has 2 ends. // if not, this is a strange case (a bug ?) so skip this hatch if( pointbuffer.size() % 2 != 0 ) continue; // sort points in order of descending x (if more than 2) to // ensure the starting point and the ending point of the same segment // are stored one just after the other. if( pointbuffer.size() > 2 ) sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX ); // creates lines or short segments inside the complex polygon for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 ) { int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x; // Push only one line for diagonal hatch, // or for small lines < twice the line length // else push 2 small lines if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len ) { m_borderHatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ ip + 1] ) ); } else { double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; slope = dy / dx; if( dx > 0 ) dx = hatch_line_len; else dx = -hatch_line_len; int x1 = KiROUND( pointbuffer[ip].x + dx ); int x2 = KiROUND( pointbuffer[ip + 1].x - dx ); int y1 = KiROUND( pointbuffer[ip].y + dx * slope ); int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope ); m_borderHatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) ); m_borderHatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) ); } } } } int ZONE::GetDefaultHatchPitch() { return Mils2iu( 20 ); } BITMAPS ZONE::GetMenuImage() const { return BITMAPS::add_zone; } void ZONE::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ZONE_T || aImage->Type() == PCB_FP_ZONE_T ); std::swap( *((ZONE*) this), *((ZONE*) aImage) ); } void ZONE::CacheTriangulation( PCB_LAYER_ID aLayer ) { if( aLayer == UNDEFINED_LAYER ) { for( std::pair& pair : m_FilledPolysList ) pair.second.CacheTriangulation(); } else { if( m_FilledPolysList.count( aLayer ) ) m_FilledPolysList[ aLayer ].CacheTriangulation(); } } bool ZONE::IsIsland( PCB_LAYER_ID aLayer, int aPolyIdx ) const { if( GetNetCode() < 1 ) return true; if( !m_insulatedIslands.count( aLayer ) ) return false; return m_insulatedIslands.at( aLayer ).count( aPolyIdx ); } void ZONE::GetInteractingZones( PCB_LAYER_ID aLayer, std::vector* aZones ) const { int epsilon = Millimeter2iu( 0.001 ); for( ZONE* candidate : GetBoard()->Zones() ) { if( candidate == this ) continue; if( !candidate->GetLayerSet().test( aLayer ) ) continue; if( candidate->GetIsRuleArea() ) continue; if( candidate->GetNetCode() != GetNetCode() ) continue; for( auto iter = m_Poly->CIterate(); iter; iter++ ) { if( candidate->m_Poly->Collide( iter.Get(), epsilon ) ) { aZones->push_back( candidate ); break; } } } } bool ZONE::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, PCB_LAYER_ID aLayer, SHAPE_POLY_SET* aBoardOutline, SHAPE_POLY_SET* aSmoothedPolyWithApron ) const { if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations will not like it ... return false; // Processing of arc shapes in zones is not yet supported because Clipper can't do boolean // operations on them. The poly outline must be flattened first. SHAPE_POLY_SET flattened = *m_Poly; flattened.ClearArcs(); if( GetIsRuleArea() ) { // We like keepouts just the way they are.... aSmoothedPoly = flattened; return true; } const BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; bool keepExternalFillets = false; if( board ) { BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings(); maxError = bds.m_MaxError; keepExternalFillets = bds.m_ZoneKeepExternalFillets; } auto smooth = [&]( SHAPE_POLY_SET& aPoly ) { switch( m_cornerSmoothingType ) { case ZONE_SETTINGS::SMOOTHING_CHAMFER: aPoly = aPoly.Chamfer( (int) m_cornerRadius ); break; case ZONE_SETTINGS::SMOOTHING_FILLET: { aPoly = aPoly.Fillet( (int) m_cornerRadius, maxError ); break; } default: break; } }; std::vector interactingZones; GetInteractingZones( aLayer, &interactingZones ); SHAPE_POLY_SET* maxExtents = &flattened; SHAPE_POLY_SET withFillets; aSmoothedPoly = flattened; // Should external fillets (that is, those applied to concave corners) be kept? While it // seems safer to never have copper extend outside the zone outline, 5.1.x and prior did // indeed fill them so we leave the mode available. if( keepExternalFillets ) { withFillets = flattened; smooth( withFillets ); withFillets.BooleanAdd( flattened, SHAPE_POLY_SET::PM_FAST ); maxExtents = &withFillets; } for( ZONE* zone : interactingZones ) { SHAPE_POLY_SET flattened_outline = *zone->Outline(); flattened_outline.ClearArcs(); aSmoothedPoly.BooleanAdd( flattened_outline, SHAPE_POLY_SET::PM_FAST ); } if( aBoardOutline ) { SHAPE_POLY_SET poly = *aBoardOutline; aSmoothedPoly.BooleanIntersection( poly, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } smooth( aSmoothedPoly ); if( aSmoothedPolyWithApron ) { SHAPE_POLY_SET poly = *maxExtents; poly.Inflate( m_ZoneMinThickness, 64 ); *aSmoothedPolyWithApron = aSmoothedPoly; aSmoothedPolyWithApron->BooleanIntersection( poly, SHAPE_POLY_SET::PM_FAST ); } aSmoothedPoly.BooleanIntersection( *maxExtents, SHAPE_POLY_SET::PM_FAST ); return true; } double ZONE::CalculateFilledArea() { m_area = 0.0; // Iterate over each outline polygon in the zone and then iterate over // each hole it has to compute the total area. for( std::pair& pair : m_FilledPolysList ) { SHAPE_POLY_SET& poly = pair.second; for( int i = 0; i < poly.OutlineCount(); i++ ) { m_area += poly.Outline( i ).Area(); for( int j = 0; j < poly.HoleCount( i ); j++ ) m_area -= poly.Hole( i, j ).Area(); } } return m_area; } double ZONE::CalculateOutlineArea() { m_outlinearea = std::abs( m_Poly->Area() ); return m_outlinearea; } void ZONE::TransformSmoothedOutlineToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearance, SHAPE_POLY_SET* aBoardOutline ) const { // Creates the zone outline polygon (with holes if any) SHAPE_POLY_SET polybuffer; BuildSmoothedPoly( polybuffer, GetLayer(), aBoardOutline ); // Calculate the polygon with clearance // holes are linked to the main outline, so only one polygon is created. if( aClearance ) { const BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; int segCount = GetArcToSegmentCount( aClearance, maxError, FULL_CIRCLE ); polybuffer.Inflate( aClearance, segCount ); } polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polybuffer ); } bool ZONE::IsKeepout() const { return m_doNotAllowCopperPour || m_doNotAllowVias || m_doNotAllowTracks || m_doNotAllowPads || m_doNotAllowFootprints; } bool ZONE::KeepoutAll() const { return m_doNotAllowCopperPour && m_doNotAllowVias && m_doNotAllowTracks && m_doNotAllowPads && m_doNotAllowFootprints; } FP_ZONE::FP_ZONE( BOARD_ITEM_CONTAINER* aParent ) : ZONE( aParent, true ) { // in a footprint, net classes are not managed. // so set the net to NETINFO_LIST::ORPHANED_ITEM SetNetCode( -1, true ); } FP_ZONE::FP_ZONE( const FP_ZONE& aZone ) : ZONE( aZone ) { InitDataFromSrcInCopyCtor( aZone ); } FP_ZONE& FP_ZONE::operator=( const FP_ZONE& aOther ) { ZONE::operator=( aOther ); return *this; } EDA_ITEM* FP_ZONE::Clone() const { return new FP_ZONE( *this ); } double FP_ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = (double)std::numeric_limits::max(); if( !aView ) return 0; if( !aView->IsLayerVisible( LAYER_ZONES ) ) return HIDE; bool flipped = GetParent() && GetParent()->GetLayer() == B_Cu; // Handle Render tab switches if( !flipped && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE; if( flipped && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE; // Other layers are shown without any conditions return 0.0; } std::shared_ptr ZONE::GetEffectiveShape( PCB_LAYER_ID aLayer ) const { std::shared_ptr shape; if( m_FilledPolysList.find( aLayer ) == m_FilledPolysList.end() ) { shape = std::make_shared(); } else { shape.reset( m_FilledPolysList.at( aLayer ).Clone() ); } return shape; } void ZONE::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool aIgnoreLineWidth ) const { wxASSERT_MSG( !aIgnoreLineWidth, wxT( "IgnoreLineWidth has no meaning for zones." ) ); if( !m_FilledPolysList.count( aLayer ) ) return; aCornerBuffer = m_FilledPolysList.at( aLayer ); // Rebuild filled areas only if clearance is not 0 if( aClearance ) { int numSegs = GetArcToSegmentCount( aClearance, aError, FULL_CIRCLE ); aCornerBuffer.InflateWithLinkedHoles( aClearance, numSegs, SHAPE_POLY_SET::PM_FAST ); } } void ZONE::TransformSolidAreasShapesToPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aCornerBuffer, int aError ) const { if( !m_FilledPolysList.count( aLayer ) || m_FilledPolysList.at( aLayer ).IsEmpty() ) return; // Just add filled areas if filled polygons outlines have no thickness if( !GetFilledPolysUseThickness() || GetMinThickness() == 0 ) { const SHAPE_POLY_SET& polys = m_FilledPolysList.at( aLayer ); aCornerBuffer.Append( polys ); return; } // Filled areas have polygons with outline thickness. // we must create the polygons and add inflated polys SHAPE_POLY_SET polys = m_FilledPolysList.at( aLayer ); auto board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; int numSegs = GetArcToSegmentCount( GetMinThickness(), maxError, FULL_CIRCLE ); polys.InflateWithLinkedHoles( GetMinThickness()/2, numSegs, SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polys ); } static struct ZONE_DESC { ZONE_DESC() { ENUM_MAP::Instance() .Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) ) .Map( ZONE_CONNECTION::NONE, _HKI( "None" ) ) .Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) ) .Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) ) .Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( ZONE ); propMgr.InheritsAfter( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Priority" ), &ZONE::SetPriority, &ZONE::GetPriority ) ); //propMgr.AddProperty( new PROPERTY( "Filled", //&ZONE::SetIsFilled, &ZONE::IsFilled ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Name" ), &ZONE::SetZoneName, &ZONE::GetZoneName ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Clearance Override" ), &ZONE::SetLocalClearance, &ZONE::GetLocalClearance, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Min Width" ), &ZONE::SetMinThickness, &ZONE::GetMinThickness, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Pad Connections" ), &ZONE::SetPadConnection, &ZONE::GetPadConnection ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Gap" ), &ZONE::SetThermalReliefGap, &ZONE::GetThermalReliefGap, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Width" ), &ZONE::SetThermalReliefSpokeWidth, &ZONE::GetThermalReliefSpokeWidth, PROPERTY_DISPLAY::DISTANCE ) ); } } _ZONE_DESC; ENUM_TO_WXANY( ZONE_CONNECTION );