/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #ifdef PROFILE #include #endif bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ) { markItemNetAsDirty( aItem ); switch( aItem->Type() ) { case PCB_FOOTPRINT_T: for( PAD* pad : static_cast( aItem )->Pads() ) { m_itemMap[pad].MarkItemsAsInvalid(); m_itemMap.erase( pad ); } m_itemList.SetDirty( true ); break; case PCB_PAD_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_TRACE_T: case PCB_ARC_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_VIA_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_ZONE_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase ( aItem ); m_itemList.SetDirty( true ); break; default: return false; } // Once we delete an item, it may connect between lists, so mark both as potentially invalid m_itemList.SetHasInvalid( true ); return true; } void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ) { if( aItem->IsConnected() ) { const BOARD_CONNECTED_ITEM* citem = static_cast( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_FOOTPRINT_T ) { const FOOTPRINT* footprint = static_cast( aItem ); for( PAD* pad : footprint->Pads() ) MarkNetAsDirty( pad->GetNetCode() ); } } } bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ) { if( !aItem->IsOnCopperLayer() ) return false; switch( aItem->Type() ) { case PCB_NETINFO_T: MarkNetAsDirty( static_cast( aItem )->GetNetCode() ); break; case PCB_FOOTPRINT_T: { if( static_cast( aItem )->GetAttributes() & FP_JUST_ADDED ) return false; for( PAD* pad : static_cast( aItem )->Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false; add( m_itemList, pad ); } break; } case PCB_PAD_T: { if( FOOTPRINT* fp = dynamic_cast( aItem->GetParentFootprint() ) ) { if( fp->GetAttributes() & FP_JUST_ADDED ) return false; } if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; } case PCB_TRACE_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ARC_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_VIA_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ZONE_T: { ZONE* zone = static_cast( aItem ); if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; m_itemMap[zone] = ITEM_MAP_ENTRY(); for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { for( CN_ITEM* zitem : m_itemList.Add( zone, layer ) ) m_itemMap[zone].Link( zitem ); } } break; default: return false; } markItemNetAsDirty( aItem ); return true; } void CN_CONNECTIVITY_ALGO::searchConnections() { #ifdef PROFILE PROF_TIMER garbage_collection( "garbage-collection" ); #endif std::vector garbage; garbage.reserve( 1024 ); m_itemList.RemoveInvalidItems( garbage ); for( CN_ITEM* item : garbage ) delete item; #ifdef PROFILE garbage_collection.Show(); PROF_TIMER search_basic( "search-basic" ); #endif thread_pool& tp = GetKiCadThreadPool(); std::vector dirtyItems; std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ), [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } ); if( m_progressReporter ) { m_progressReporter->SetMaxProgress( dirtyItems.size() ); if( !m_progressReporter->KeepRefreshing() ) return; } if( m_itemList.IsDirty() ) { std::vector> returns( dirtyItems.size() ); auto conn_lambda = [&dirtyItems]( size_t aItem, CN_LIST* aItemList, PROGRESS_REPORTER* aReporter) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0; CN_VISITOR visitor( dirtyItems[aItem] ); aItemList->FindNearby( dirtyItems[aItem], visitor ); if( aReporter ) aReporter->AdvanceProgress(); return 1; }; for( size_t ii = 0; ii < dirtyItems.size(); ++ii ) returns[ii] = tp.submit( conn_lambda, ii, &m_itemList, m_progressReporter ); for( const std::future& ret : returns ) { // Here we balance returns with a 250ms timeout to allow UI updating std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) ); while( status != std::future_status::ready ) { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } } if( m_progressReporter ) m_progressReporter->KeepRefreshing(); } #ifdef PROFILE search_basic.Show(); #endif m_itemList.ClearDirtyFlags(); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ) { if( aMode == CSM_PROPAGATE ) { return SearchClusters( aMode, { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_FOOTPRINT_T }, -1 ); } else { return SearchClusters( aMode, { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_T, PCB_FOOTPRINT_T }, -1 ); } } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const std::initializer_list& aTypes, int aSingleNet, CN_ITEM* rootItem ) { bool withinAnyNet = ( aMode != CSM_PROPAGATE ); std::deque Q; std::set item_set; CLUSTERS clusters; if( m_itemList.IsDirty() ) searchConnections(); auto addToSearchList = [&item_set, withinAnyNet, aSingleNet, &aTypes, rootItem ]( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return; if( !aItem->Valid() ) return; if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return; bool found = false; for( KICAD_T type : aTypes ) { if( aItem->Parent()->Type() == type ) { found = true; break; } } if( !found && aItem != rootItem ) return; aItem->SetVisited( false ); item_set.insert( aItem ); }; std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS(); while( !item_set.empty() ) { std::shared_ptr cluster = std::make_shared(); CN_ITEM* root; auto it = item_set.begin(); while( it != item_set.end() && (*it)->Visited() ) it = item_set.erase( item_set.begin() ); if( it == item_set.end() ) break; root = *it; root->SetVisited( true ); Q.clear(); Q.push_back( root ); while( Q.size() ) { CN_ITEM* current = Q.front(); Q.pop_front(); cluster->Add( current ); for( CN_ITEM* n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue; if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); } } } clusters.push_back( cluster ); } if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS(); std::sort( clusters.begin(), clusters.end(), []( const std::shared_ptr& a, const std::shared_ptr& b ) { return a->OriginNet() < b->OriginNet(); } ); return clusters; } void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter ) { // Generate CN_ZONE_LAYERs for each island on each layer of each zone // std::vector zitems; for( ZONE* zone : aBoard->Zones() ) { if( zone->IsOnCopperLayer() ) { m_itemMap[zone] = ITEM_MAP_ENTRY(); markItemNetAsDirty( zone ); for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { if( IsCopperLayer( layer ) ) { for( int j = 0; j < zone->GetFilledPolysList( layer )->OutlineCount(); j++ ) zitems.push_back( new CN_ZONE_LAYER( zone, layer, j ) ); } } } } // Setup progress metrics // int progressDelta = 50; double size = 0.0; size += zitems.size(); // Once for building RTrees size += zitems.size(); // Once for adding to connectivity size += aBoard->Tracks().size(); for( FOOTPRINT* footprint : aBoard->Footprints() ) size += footprint->Pads().size(); size *= 1.5; // Our caller gets the other third of the progress bar progressDelta = std::max( progressDelta, (int) size / 4 ); auto report = [&]( int progress ) { if( aReporter && ( progress % progressDelta ) == 0 ) { aReporter->SetCurrentProgress( progress / size ); aReporter->KeepRefreshing( false ); } }; // Generate RTrees for CN_ZONE_LAYER items (in parallel) // thread_pool& tp = GetKiCadThreadPool(); std::vector> returns( zitems.size() ); auto cache_zones = [aReporter]( CN_ZONE_LAYER* aZoneLayer ) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0; aZoneLayer->BuildRTree(); if( aReporter ) aReporter->AdvanceProgress(); return 1; }; for( size_t ii = 0; ii < zitems.size(); ++ii ) returns[ii] = tp.submit( cache_zones, zitems[ii] ); for( const std::future& ret : returns ) { std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) ); while( status != std::future_status::ready ) { if( aReporter ) aReporter->KeepRefreshing(); status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } } // Add CN_ZONE_LAYERS, tracks, and pads to connectivity // int ii = zitems.size(); for( CN_ZONE_LAYER* zitem : zitems ) { m_itemList.Add( zitem ); m_itemMap[ zitem->Parent() ].Link( zitem ); report( ++ii ); } for( PCB_TRACK* tv : aBoard->Tracks() ) { Add( tv ); report( ++ii ); } for( FOOTPRINT* footprint : aBoard->Footprints() ) { for( PAD* pad : footprint->Pads() ) { Add( pad ); report( ++ii ); } } if( aReporter ) { aReporter->SetCurrentProgress( (double) ii / (double) size ); aReporter->KeepRefreshing( false ); } } void CN_CONNECTIVITY_ALGO::LocalBuild( const std::vector& aItems ) { for( BOARD_ITEM* item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: case PCB_PAD_T: case PCB_FOOTPRINT_T: Add( item ); break; default: break; } } } void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode ) { bool skipConflicts = ( aMode == PROPAGATE_MODE::SKIP_CONFLICTS ); wxLogTrace( wxT( "CN" ), wxT( "propagateConnections: propagate skip conflicts? %d" ), skipConflicts ); for( const std::shared_ptr& cluster : m_connClusters ) { if( skipConflicts && cluster->IsConflicting() ) { wxLogTrace( wxT( "CN" ), wxT( "Conflicting nets in cluster %p; skipping update" ), cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( wxT( "CN" ), wxT( "Skipping orphaned cluster %p [net: %s]" ), cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { if( cluster->IsConflicting() ) { wxLogTrace( wxT( "CN" ), wxT( "Conflicting nets in cluster %p; chose %d (%s)" ), cluster.get(), cluster->OriginNet(), cluster->OriginNetName() ); } // normal cluster: just propagate from the pads int n_changed = 0; for( CN_ITEM* item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() ); if( aCommit ) aCommit->Modify( item->Parent() ); item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } } if( n_changed ) { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p : net : %d %s" ), cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); } else { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p : nothing to propagate" ), cluster.get() ); } } else { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p : connected to unused net" ), cluster.get() ); } } } void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode ) { m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections( aCommit, aMode ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE* aZone, PCB_LAYER_ID aLayer, std::vector& aIslands ) { if( aZone->GetFilledPolysList( aLayer )->IsEmpty() ) return; aIslands.clear(); Remove( aZone ); Add( aZone ); m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( const std::shared_ptr& cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( CN_ITEM* z : *cluster ) { if( z->Parent() == aZone && z->Layer() == aLayer ) aIslands.push_back( static_cast(z)->SubpolyIndex() ); } } } wxLogTrace( wxT( "CN" ), wxT( "Found %u isolated islands\n" ), (unsigned) aIslands.size() ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector& aZones, bool aConnectivityAlreadyRebuilt ) { int progressDelta = 50; int ii = 0; progressDelta = std::max( progressDelta, (int) aZones.size() / 4 ); if( !aConnectivityAlreadyRebuilt ) { for( CN_ZONE_ISOLATED_ISLAND_LIST& z : aZones ) { Remove( z.m_zone ); Add( z.m_zone ); ii++; if( m_progressReporter && ( ii % progressDelta ) == 0 ) { m_progressReporter->SetCurrentProgress( (double) ii / (double) aZones.size() ); m_progressReporter->KeepRefreshing( false ); } if( m_progressReporter && m_progressReporter->IsCancelled() ) return; } } m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : aZones ) { for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() ) { if( zone.m_zone->GetFilledPolysList( layer )->IsEmpty() ) continue; for( const std::shared_ptr& cluster : m_connClusters ) { if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() ) { for( CN_ITEM* z : *cluster ) { if( z->Parent() == zone.m_zone && z->Layer() == layer ) { zone.m_islands[layer].push_back( static_cast( z )->SubpolyIndex() ); } } } } } } } const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters() { m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters; } void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ) { if( aNet < 0 ) return; if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1; if( lastNet < 0 ) lastNet = 0; m_dirtyNets.resize( aNet + 1 ); for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; } m_dirtyNets[aNet] = true; } void CN_VISITOR::checkZoneItemConnection( CN_ZONE_LAYER* aZoneLayer, CN_ITEM* aItem ) { PCB_LAYER_ID layer = aZoneLayer->GetLayer(); BOARD_CONNECTED_ITEM* item = aItem->Parent(); if( !item->IsOnLayer( layer ) ) return; auto connect = [&]() { aZoneLayer->Connect( aItem ); aItem->Connect( aZoneLayer ); }; // Try quick checks first... if( item->Type() == PCB_PAD_T ) { PAD* pad = static_cast( item ); if( pad->GetRemoveUnconnected() && pad->ZoneConnectionCache( layer ) == ZLC_UNCONNECTED ) return; } else if( item->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( item ); if( via->GetRemoveUnconnected() && via->ZoneConnectionCache( layer ) == ZLC_UNCONNECTED ) return; } for( int i = 0; i < aItem->AnchorCount(); ++i ) { if( aZoneLayer->ContainsPoint( aItem->GetAnchor( i ) ) ) { connect(); return; } } if( item->Type() == PCB_VIA_T || item->Type() == PCB_PAD_T ) { // As long as the pad/via crosses the zone layer, check for the full effective shape // We check for the overlapping layers above if( aZoneLayer->Collide( item->GetEffectiveShape( layer, FLASHING::ALWAYS_FLASHED ).get() ) ) connect(); return; } if( aZoneLayer->Collide( item->GetEffectiveShape( layer ).get() ) ) connect(); } void CN_VISITOR::checkZoneZoneConnection( CN_ZONE_LAYER* aZoneLayerA, CN_ZONE_LAYER* aZoneLayerB ) { const ZONE* zoneA = static_cast( aZoneLayerA->Parent() ); const ZONE* zoneB = static_cast( aZoneLayerB->Parent() ); const BOX2I& boxA = aZoneLayerA->BBox(); const BOX2I& boxB = aZoneLayerB->BBox(); PCB_LAYER_ID layer = aZoneLayerA->GetLayer(); if( aZoneLayerB->GetLayer() != layer ) return; if( !boxA.Intersects( boxB ) ) return; const SHAPE_LINE_CHAIN& outline = zoneA->GetFilledPolysList( layer )->COutline( aZoneLayerA->SubpolyIndex() ); for( int i = 0; i < outline.PointCount(); i++ ) { if( !boxB.Contains( outline.CPoint( i ) ) ) continue; if( aZoneLayerB->ContainsPoint( outline.CPoint( i ) ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } } const SHAPE_LINE_CHAIN& outline2 = zoneB->GetFilledPolysList( layer )->COutline( aZoneLayerB->SubpolyIndex() ); for( int i = 0; i < outline2.PointCount(); i++ ) { if( !boxA.Contains( outline2.CPoint( i ) ) ) continue; if( aZoneLayerA->ContainsPoint( outline2.CPoint( i ) ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } } } bool CN_VISITOR::operator()( CN_ITEM* aCandidate ) { const BOARD_CONNECTED_ITEM* parentA = aCandidate->Parent(); const BOARD_CONNECTED_ITEM* parentB = m_item->Parent(); if( !aCandidate->Valid() || !m_item->Valid() ) return true; if( parentA == parentB ) return true; // Don't connect items in different nets that can't be changed if( !aCandidate->CanChangeNet() && !m_item->CanChangeNet() && aCandidate->Net() != m_item->Net() ) return true; // If both m_item and aCandidate are marked dirty, they will both be searched // Since we are reciprocal in our connection, we arbitrarily pick one of the connections // to conduct the expensive search if( aCandidate->Dirty() && aCandidate < m_item ) return true; // We should handle zone-zone connection separately if ( parentA->Type() == PCB_ZONE_T && parentB->Type() == PCB_ZONE_T ) { checkZoneZoneConnection( static_cast( m_item ), static_cast( aCandidate ) ); return true; } if( parentA->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast( aCandidate ), m_item ); return true; } if( parentB->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast( m_item ), aCandidate ); return true; } LSET commonLayers = parentA->GetLayerSet() & parentB->GetLayerSet(); for( PCB_LAYER_ID layer : commonLayers.Seq() ) { FLASHING flashingA = FLASHING::NEVER_FLASHED; FLASHING flashingB = FLASHING::NEVER_FLASHED; if( const PAD* pad = dyn_cast( parentA ) ) { if( !pad->GetRemoveUnconnected() || ( ( layer == F_Cu || layer == B_Cu ) && pad->GetKeepTopBottom() ) ) flashingA = FLASHING::ALWAYS_FLASHED; } else if( const PCB_VIA* via = dyn_cast( parentA ) ) { if( !via->GetRemoveUnconnected() || ( ( layer == F_Cu || layer == B_Cu ) && via->GetKeepTopBottom() ) ) flashingA = FLASHING::ALWAYS_FLASHED; } if( const PAD* pad = dyn_cast( parentB ) ) { if( !pad->GetRemoveUnconnected() || ( ( layer == F_Cu || layer == B_Cu ) && pad->GetKeepTopBottom() ) ) flashingB = FLASHING::ALWAYS_FLASHED; } else if( const PCB_VIA* via = dyn_cast( parentB ) ) { if( !via->GetRemoveUnconnected() || ( ( layer == F_Cu || layer == B_Cu ) && via->GetKeepTopBottom() ) ) flashingB = FLASHING::ALWAYS_FLASHED; } if( parentA->GetEffectiveShape( layer, flashingA )->Collide( parentB->GetEffectiveShape( layer, flashingB ).get() ) ) { m_item->Connect( aCandidate ); aCandidate->Connect( m_item ); return true; } } return true; }; void CN_CONNECTIVITY_ALGO::Clear() { m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear(); } void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; }